Skip to main content

Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration

  • Chapter
  • First Online:
Dental Stem Cells

Abstract

Regeneration in oral and craniofacial regions includes several specified tissues such as pulp, bone, cartilage, muscle, fat, blood vessels and neurons. Neural crest-derived dental stem cells (DSCs) as a medical waste hold a promise for regeneration in craniofacial region. Five different DSCs have been isolated and characterized: Dental pulp stem cells (DPSCs), stem cells from apical papillae (SCAPs), stem cells obtained from human exfoliated deciduous teeth (SHEDs), dental follicle stem cells (DFSCs) and periodontal ligament stem cells (PDLSCs). These dental tissue- derived stem cells have demonstrated the capability to differentiate towards various cell lineages including adipogenic, chondrogenic, osteogenic, and neurogenic in vitro. Moreover, various studies have shown their potential for regeneration of dentin/pulp, bone, neural, vascular, muscle, cartilage and adipose tissues. Application of DSCs for oral and craniofacial tissues is still in its infancy. However, this chapter will provide insight towards the progress being made regarding utilization of DSCs in oral, maxillofacial and craniofacial regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behnia H, Homayoun S, Qaranizade K, Morad G, Khojasteh A (2013) Multidisciplinary reconstruction of a palatomaxillary defect with nonvascularized fibula bone graft and distraction osteogenesis. J Craniofac Surg 24(2):e186–e190

    Article  PubMed  Google Scholar 

  2. Khojasteh A, Behnia H, Shayesteh YS, Morad G, Alikhasi M (2011) Localized bone augmentation with cortical bone blocks tented over different particulate bone substitutes: a retrospective study. Int J Oral Maxillofac Implants 27(6):1481–1493

    Google Scholar 

  3. Khojasteh A, Eslaminejad MB, Nazarian H, Morad G, Dashti SG, Behnia H, Stevens M (2013) Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: a preliminary study in rabbit. J Oral Implantol 39(1):3–13

    Article  PubMed  Google Scholar 

  4. Khojasteh A, Ghahremani MH, Ostad SN, Eslami M, Motahhary P, Morad G, Shidfar S (2013) The effect of deproteinized bovine bone mineral on Saos-2 cell proliferation. Iran Endod J 8(3):118–122

    PubMed  PubMed Central  Google Scholar 

  5. Khojasteh A, Sadr SJ, Saboury A, Shidfar S (2014) Onlay bone augmentation and bilateral open sinus lifting with simultaneous implant placement in a cherubic patient. J Craniofac Surg 25(2):e193–e196

    Article  PubMed  Google Scholar 

  6. Morad G, Khojasteh A (2013) Cortical tenting technique versus onlay layered technique for vertical augmentation of atrophic posterior mandibles: a split-mouth pilot study. Implant Dent 22(6):566–571

    Article  PubMed  Google Scholar 

  7. Hassani A, Khojasteh A, Shamsabad AN (2005) The anterior palate as a donor site in maxillofacial bone grafting: a quantitative anatomic study. J Oral Maxillofac Surg 63(8):1196–1200

    Article  PubMed  Google Scholar 

  8. McAllister BS, Haghighat K (2007) Bone augmentation techniques. J Periodontol 78(3):377–396. doi:10.1902/jop.2007.060048

    Article  PubMed  Google Scholar 

  9. Rocchietta I, Fontana F, Simion M (2008) Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review. J Clin Periodontol 35(8 Suppl):203–215. doi:10.1111/j.1600-051X.2008.01271.x

    Article  PubMed  Google Scholar 

  10. Montazem A, Valauri DV, St-Hilaire H, Buchbinder D (2000) The mandibular symphysis as a donor site in maxillofacial bone grafting: a quantitative anatomic study. J Oral Maxillofac Surg 58(12):1368–1371. doi:10.1053/joms.2000.18268

    Article  CAS  PubMed  Google Scholar 

  11. Khojasteh A, Behnia H, Naghdi N, Esmaeelinejad M, Alikhassy Z, Stevens M (2013) Effects of different growth factors and carriers on bone regeneration: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 116(6):e405–423. doi:10.1016/j.oooo.2012.01.044

    Article  PubMed  Google Scholar 

  12. Marx RE (2008) Application of tissue engineering principles to clinical practice. In: Lynch SE, Genco RJ, Marx RE (eds) Tissue engineering: application in oral and maxillofacial surgery and periodontics, 2nd edn. Quintessence Publishing, Chicago, IL, pp 54–57

    Google Scholar 

  13. Bhumiratana S, Vunjak-Novakovic G (2012) Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 1(1):64–69. doi:10.5966/sctm.2011-0020

    Article  CAS  PubMed  Google Scholar 

  14. Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H (2012) The current and future therapies of bone regeneration to repair bone defects. Int J Dent 2012:1–7. doi:10.1155/2012/148261

    Article  CAS  Google Scholar 

  15. Buxton P, Cobourne M (2007) Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro‐facial repair. Oral Dis 13(5):452–460

    Article  CAS  PubMed  Google Scholar 

  16. Behjati S, Huch M, van Boxtel R, Karthaus W, Wedge DC, Tamuri AU, Martincorena I, Petljak M, Alexandrov LB, Gundem G, Tarpey PS, Roerink S, Blokker J, Maddison M, Mudie L, Robinson B, Nik-Zainal S, Campbell P, Goldman N, van de Wetering M, Cuppen E, Clevers H, Stratton MR (2014) Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513(7518):422–425. doi:10.1038/nature13448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korbling M, Estrov Z (2003) Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med 349(6):570–582. doi:10.1056/NEJMra022361

    Article  PubMed  Google Scholar 

  18. Chen L, Song J, Cui J, Hou J, Zheng X, Li C, Liu L (2013) microRNAs regulate adipocyte differentiation. Cell Biol Int 37(6):533–546. doi:10.1002/cbin.10063

    Article  CAS  PubMed  Google Scholar 

  19. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235. doi:10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217. doi:10.1038/nrm2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630. doi:10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rezai Rad M, Liu D, He H, Brooks H, Xiao M, Wise GE, Yao S (2015) The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs). Arch Oral Biol 60(4):546–556. doi:10.1016/j.archoralbio.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  23. Han J, Menicanin D, Gronthos S, Bartold PM (2014) Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 59(Suppl 1):117–130. doi:10.1111/adj.12100

    Article  PubMed  Google Scholar 

  24. Leeb C, Jurga M, McGuckin C, Moriggl R, Kenner L (2010) Promising new sources for pluripotent stem cells. Stem Cell Rev 6(1):15–26. doi:10.1007/s12015-009-9102-0

    Article  PubMed  Google Scholar 

  25. McKay R (2000) Stem cells--hype and hope. Nature 406(6794):361–364. doi:10.1038/35019186

    Article  PubMed  CAS  Google Scholar 

  26. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  27. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  28. Hynes K, Menicanin D, Gronthos S, Bartold PM (2012) Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 59(1):203–227. doi:10.1111/j.1600-0757.2012.00443.x

    Article  PubMed  Google Scholar 

  29. Khojasteh A, Behnia H, Dashti SG, Stevens M (2012) Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature. J Oral Maxillofac Surg 70(4):972–982

    Article  PubMed  Google Scholar 

  30. Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle) 2(6):306–316. doi:10.1089/wound.2012.0420

    Article  Google Scholar 

  31. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746. doi:10.1111/j.1582-4934.2010.01224.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rad MR (2014) Characteristics of dental follicle stem cells and their potential application for treatment of craniofacial defects. Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Science through The Department of Comparative Biomedical Sciences by Maryam Rezai Rad DDS, Tehran University of Medical Sciences

    Google Scholar 

  33. Jaquery A (2007) Implantation of dental pulp stem cells in a biodegradable scaffold for dental pulp tissue engineering. University of Michigan, Ann Arbor, MI

    Google Scholar 

  34. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y (2007) Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99(8):465–474. doi:10.1042/bc20070013

    Article  CAS  PubMed  Google Scholar 

  35. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812. doi:10.1073/pnas.0937635100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34(6):645–651. doi:10.1016/j.joen.2008.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155. doi:10.1016/s0140-6736(04)16627-0

    Article  CAS  PubMed  Google Scholar 

  38. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165. doi:10.1016/j.matbio.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  39. Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22(2):91–98

    PubMed  Google Scholar 

  40. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. doi:10.1177/0022034509340867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mori G, Ballini A, Carbone C, Oranger A, Brunetti G, Di Benedetto A, Rapone B, Cantore S, Di Comite M, Colucci S, Grano M, Grassi FR (2012) Osteogenic differentiation of dental follicle stem cells. Int J Med Sci 9(6):480–487. doi:10.7150/ijms.4583

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morsczeck C, Schmalz G, Reichert TE, Vollner F, Galler K, Driemel O (2008) Somatic stem cells for regenerative dentistry. Clin Oral Investig 12(2):113–118. doi:10.1007/s00784-007-0170-8

    Article  PubMed  Google Scholar 

  43. Rodriguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramirez MC, Blanquer M, Marin N, Martinez S, Moraleda JM (2011) Mesenchymal stem cells derived from dental tissues. Int Endod J 44(9):800–806. doi:10.1111/j.1365-2591.2011.01877.x

    Article  CAS  PubMed  Google Scholar 

  44. Fitzgerald M, Chiego DJ Jr, Heys DR (1990) Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 35(9):707–715

    Article  CAS  PubMed  Google Scholar 

  45. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  CAS  PubMed  Google Scholar 

  46. Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274. doi:10.1159/000151447

    PubMed  Google Scholar 

  47. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8(3):191–199. doi:10.1111/j.1601-6343.2005.00331.x

    Article  CAS  PubMed  Google Scholar 

  48. Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29(6):532–539

    Article  CAS  PubMed  Google Scholar 

  49. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18(4):696–704. doi:10.1359/jbmr.2003.18.4.696

    Article  PubMed  Google Scholar 

  50. Yang X, Zhang W, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA (2007) Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J Tissue Eng Regen Med 1(2):128–135. doi:10.1002/term.13

    Article  CAS  PubMed  Google Scholar 

  51. Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, Jansen JA (2009) Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 15(2):367–375. doi:10.1089/ten.tea.2008.0133

    Article  CAS  PubMed  Google Scholar 

  52. Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M, Jansen JA (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1(1):66–73. doi:10.1002/term.16

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35(11):1536–1542. doi:10.1016/j.joen.2009.07.024

    Article  PubMed  Google Scholar 

  54. Sloan AJ, Waddington RJ (2009) Dental pulp stem cells: what, where, how? Int J Paediatr Dent 19(1):61–70. doi:10.1111/j.1365-263X.2008.00964.x

    Article  PubMed  Google Scholar 

  55. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas P Jr (2003) Role of Hertwig's epithelial root sheath cells in tooth root development. Dev Dyn 228(4):651–663. doi:10.1002/dvdy.10404

    Article  CAS  PubMed  Google Scholar 

  56. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171. doi:10.1016/j.joen.2007.11.021

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1(1):1–8. doi:10.1371/journal.pone.0000079

    Article  CAS  Google Scholar 

  58. Hoffman RL (1966) Bone formation and resorption around developing teeth transplanted into the femur. Am J Anat 118(1):91–102. doi:10.1002/aja.1001180106

    Article  CAS  PubMed  Google Scholar 

  59. Coura GS, Garcez RC, de Aguiar CB, Alvarez-Silva M, Magini RS, Trentin AG (2008) Human periodontal ligament: a niche of neural crest stem cells. J Periodontal Res 43(5):531–536. doi:10.1111/j.1600-0765.2007.01065.x

    Article  CAS  PubMed  Google Scholar 

  60. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S (2006) Craniofacial tissue engineering by stem cells. J Dent Res 85(11):966–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McCulloch CA, Nemeth E, Lowenberg B, Melcher AH (1987) Paravascular cells in endosteal spaces of alveolar bone contribute to periodontal ligament cell populations. Anat Rec 219(3):233–242. doi:10.1002/ar.1092190304

    Article  CAS  PubMed  Google Scholar 

  62. Bartold PM, Shi S, Gronthos S (2006) Stem cells and periodontal regeneration. Periodontol 2000 40:164–172. doi:10.1111/j.1600-0757.2005.00139.x

    Article  PubMed  Google Scholar 

  63. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, Glowacki J (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343. doi:10.1111/j.1474-9726.2008.00377.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xia L, Zhang Z, Chen L, Zhang W, Zeng D, Zhang X, Chang J, Jiang X (2011) Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and beta-TCP bioceramics. Eur Cell Mater 22:68–82

    CAS  PubMed  Google Scholar 

  65. Ten Cate AR (1997) The development of the periodontium--a largely ectomesenchymally derived unit. Periodontol 2000 13:9–19

    Article  PubMed  Google Scholar 

  66. Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87(5):414–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. MacNeil RL, Thomas HF (1993) Development of the murine periodontium. II. Role of the epithelial root sheath in formation of the periodontal attachment. J Periodontol 64(4):285–291. doi:10.1902/jop.1993.64.4.285

    Article  CAS  PubMed  Google Scholar 

  68. Spouge JD (1980) A new look at the rests of Malassez. A review of their embryological origin, anatomy, and possible role in periodontal health and disease. J Periodontol 51(8):437–444. doi:10.1902/jop.1980.51.8.437

    Article  CAS  PubMed  Google Scholar 

  69. Diekwisch TG (2001) The developmental biology of cementum. Int J Dev Biol 45(5–6):695–706

    CAS  PubMed  Google Scholar 

  70. Ten Cate AR, Sharpe PT, Roy S, Nanci A (2003) Ten Cate’s oral histology: development, structure, and function. Elsevier Health Sciences, St Louis

    Google Scholar 

  71. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C (2010) Dental follicle stem cells and tissue engineering. J Oral Sci 52(4):541–552

    Article  PubMed  Google Scholar 

  72. Yao S, Pan F, Prpic V, Wise GE (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87(8):767–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Watt FM, Hogan B (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  CAS  PubMed  Google Scholar 

  74. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9(1):11–21. doi:10.1038/nrm2319

    Article  CAS  PubMed  Google Scholar 

  75. Mitsiadis TA, Feki A, Papaccio G, Caton J (2011) Dental pulp stem cells, niches, and notch signaling in tooth injury. Adv Dent Res 23(3):275–279. doi:10.1177/0022034511405386

    Article  CAS  PubMed  Google Scholar 

  76. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441(7097):1075–1079

    Article  CAS  PubMed  Google Scholar 

  77. da Cunha JM, da Costa-Neves A, Kerkis I, da Silva MC (2013) Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res 353(3):435–441. doi:10.1007/s00441-013-1658-y

    Article  PubMed  CAS  Google Scholar 

  78. Tecles O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, About I (2005) Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 50(2):103–108. doi:10.1016/j.archoralbio.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  79. Lovschall H, Tummers M, Thesleff I, Fuchtbauer EM, Poulsen K (2005) Activation of the Notch signaling pathway in response to pulp capping of rat molars. Eur J Oral Sci 113(4):312–317. doi:10.1111/j.1600-0722.2005.00221.x

    Article  CAS  PubMed  Google Scholar 

  80. Boxall SA, Jones E (2012) Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012:1–12. doi:10.1155/2012/975871

    Article  CAS  Google Scholar 

  81. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  82. Couve E (1986) Ultrastructural changes during the life cycle of human odontoblasts. Arch Oral Biol 31(10):643–651

    Article  CAS  PubMed  Google Scholar 

  83. Romagnoli P, Mancini G, Galeotti F, Francini E, Pierleoni P (1990) The crown odontoblasts of rat molars from primary dentinogenesis to complete eruption. J Dent Res 69(12):1857–1862

    Article  CAS  PubMed  Google Scholar 

  84. Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H (1995) Reactionary dentinogenesis. Int J Dev Biol 39(1):273–280

    CAS  PubMed  Google Scholar 

  85. Nor JE (2006) Tooth regeneration in operative dentistry. Oper Dent 31(6):633–642. doi:10.2341/06-000

    Article  PubMed  Google Scholar 

  86. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82(12):976–981

    Article  CAS  PubMed  Google Scholar 

  87. Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K (2008) Characterization of dental pulp stem cells of human tooth germs. J Dent Res 87(7):676–681

    Article  CAS  PubMed  Google Scholar 

  88. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16(2):605–615. doi:10.1089/ten.TEA.2009.0518

    Article  CAS  PubMed  Google Scholar 

  89. Wang J, Ma H, Jin X, Hu J, Liu X, Ni L, Ma PX (2011) The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 32(31):7822–7830. doi:10.1016/j.biomaterials.2011.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Buurma B, Gu K, Rutherford RB (1999) Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds. Eur J Oral Sci 107(4):282–289

    Article  CAS  PubMed  Google Scholar 

  91. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, John AS, George A (2008) In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 34(4):421–426. doi:10.1016/j.joen.2008.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969. doi:10.1016/j.joen.2008.04.009

    Article  PubMed  Google Scholar 

  93. Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M (2006) Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24(11):2493–2503. doi:10.1634/stemcells.2006-0161

    Article  CAS  PubMed  Google Scholar 

  94. Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A (2004) Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15(11):1045–1053. doi:10.1089/hum.2004.15.1045

    Article  CAS  PubMed  Google Scholar 

  95. Peters MC, Polverini PJ, Mooney DJ (2002) Engineering vascular networks in porous polymer matrices. J Biomed Mater Res 60(4):668–678

    Article  CAS  PubMed  Google Scholar 

  96. Stiver SI, Tan X, Brown LF, Hedley-Whyte ET, Dvorak HF (2004) VEGF-A angiogenesis induces a stable neovasculature in adult murine brain. J Neuropathol Exp Neurol 63(8):841–855

    Article  CAS  PubMed  Google Scholar 

  97. Sun Q, Chen RR, Shen Y, Mooney DJ, Rajagopalan S, Grossman PM (2005) Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 22(7):1110–1116. doi:10.1007/s11095-005-5644-2

    Article  CAS  PubMed  Google Scholar 

  98. Iohara K, Zheng L, Ito M, Ishizaka R, Nakamura H, Into T, Matsushita K, Nakashima M (2009) Regeneration of dental pulp after pulpotomy by transplantation of CD31(−)/CD146(−) side population cells from a canine tooth. Regen Med 4(3):377–385. doi:10.2217/rme.09.5

    Article  CAS  PubMed  Google Scholar 

  99. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H, Nakashima M (2011) Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A 17(15–16):1911–1920. doi:10.1089/ten.TEA.2010.0615

    Article  CAS  PubMed  Google Scholar 

  100. Colnot C (2011) Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev 17(6):449–457. doi:10.1089/ten.TEB.2011.0243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khojasteh A, Motamedian SR (2016) Mesenchymal stem cell therapy for treatment of craniofacial bone defects: 10 years of experience. Regen Reconstr Restor 1(1):1–7. doi:107508/rrr.2015.01.001

    Google Scholar 

  102. Khojasteh A, Eslaminejad MB, Nazarian H (2008) Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol 106(3):356–362

    Article  Google Scholar 

  103. Khojasteh A, Behnia H, Hosseini FS, Dehghan MM, Abbasnia P, Abbas FM (2013) The effect of PCL‐TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. J Biomed Mater Res B: Appl Biomater 101(5):848–854

    Article  CAS  Google Scholar 

  104. Khojasteh A (2014) Regenerative medicine in dentistry: new horizons. J Paramed Sci 5(3)

    Google Scholar 

  105. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31(5):606–611

    Article  CAS  PubMed  Google Scholar 

  106. Yagyuu T, Ikeda E, Ohgushi H, Tadokoro M, Hirose M, Maeda M, Inagake K, Kirita T (2010) Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. Arch Oral Biol 55(1):68–76. doi:10.1016/j.archoralbio.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  107. Honda MJ, Imaizumi M, Suzuki H, Ohshima S, Tsuchiya S, Satomura K (2011) Stem cells isolated from human dental follicles have osteogenic potential. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(6):700–708. doi:10.1016/j.tripleo.2010.08.004

    Article  PubMed  Google Scholar 

  108. Tsuchiya S, Ohshima S, Yamakoshi Y, Simmer JP, Honda MJ (2010) Osteogenic differentiation capacity of porcine dental follicle progenitor cells. Connect Tissue Res 51(3):197–207. doi:10.3109/03008200903267542

    Article  CAS  PubMed  Google Scholar 

  109. Rezai Rad M, Bova JF, Orooji M, Pepping J, Qureshi A, Piero FD, Hayes D, Yao S (2015) Evaluation of bone regeneration potential of dental follicle stem cells (DFSCs) for treatment of craniofacial defects. Cytotherapy 17(11):1572–1581. doi:10.1016/j.jcyt.2015.07.013

    Google Scholar 

  110. Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D'Aquino R, Graziano A, Lanza V, Scapoli L, Martinelli M, Pezzetti F (2008) Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. J Craniofac Surg 19(3):616–625. doi:10.1097/SCS.0b013e31816aabc8

    Article  PubMed  Google Scholar 

  111. Graziano A, d'Aquino R, Laino G, Proto A, Giuliano MT, Pirozzi G, De Rosa A, Di Napoli D, Papaccio G (2008) Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 41(1):1–11. doi:10.1111/j.1365-2184.2007.00497.x

    Article  CAS  PubMed  Google Scholar 

  112. Riccio M, Maraldi T, Pisciotta A, La Sala GB, Ferrari A, Bruzzesi G, Motta A, Migliaresi C, De Pol A (2012) Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells. Tissue Eng Part A 18(9–10):1006–1013. doi:10.1089/ten.TEA.2011.0542

    Article  CAS  PubMed  Google Scholar 

  113. Annibali S, Bellavia D, Ottolenghi L, Cicconetti A, Cristalli MP, Quaranta R, Pilloni A (2014) Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect: preliminary data. J Biomed Mater Res B Appl Biomater 102(4):815–825. doi:10.1002/jbm.b.33064

    Article  PubMed  CAS  Google Scholar 

  114. d'Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    PubMed  Google Scholar 

  115. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d'Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2(4):316–324. doi:10.5966/sctm.2012-0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20(7):1003–1013. doi:10.3727/096368910x539128

    Article  PubMed  Google Scholar 

  117. Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA (2001) Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 262(2):193–202

    Article  CAS  PubMed  Google Scholar 

  118. Moshaverinia A, Xu X, Chen C, Akiyama K, Snead ML, Shi S (2013) Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 9(12):9343–9350. doi:10.1016/j.actbio.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  119. Kim SH, Kim KH, Seo BM, Koo KT, Kim TI, Seol YJ, Ku Y, Rhyu IC, Chung CP, Lee YM (2009) Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol 80(11):1815–1823. doi:10.1902/jop.2009.090249

    Article  PubMed  Google Scholar 

  120. Xu J, Wang W, Kapila Y, Lotz J, Kapila S (2009) Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev 18(3):487–496. doi:10.1089/scd.2008.0113

    Article  CAS  PubMed  Google Scholar 

  121. Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 10(3):149–160. doi:10.1111/j.1601-6343.2007.00399.x

    Article  CAS  PubMed  Google Scholar 

  122. Houshmand B, Behnia H, Khoshzaban A, Morad G, Behrouzi G, Dashti SG, Khojasteh A (2012) Osteoblastic differentiation of human stem cells derived from bone marrow and periodontal ligament under the effect of enamel matrix derivative and transforming growth factor-beta. Int J Oral Maxillofac Implants 28(6):e440–450

    Article  Google Scholar 

  123. de Mendonca CA, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, Cerruti H, Alonso N, Passos-Bueno MR (2008) Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 19(1):204–210. doi:10.1097/scs.0b013e31815c8a54

    Google Scholar 

  124. Chadipiralla K, Yochim JM, Bahuleyan B, Huang CY, Garcia-Godoy F, Murray PE, Stelnicki EJ (2010) Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth. Cell Tissue Res 340(2):323–333. doi:10.1007/s00441-010-0953-0

    Article  PubMed  Google Scholar 

  125. Zhang H, Wang J, Deng F, Huang E, Yan Z, Wang Z, Deng Y, Zhang Q, Zhang Z, Ye J, Qiao M, Li R, Wang J, Wei Q, Zhou G, Luu HH, Haydon RC, He TC, Deng F (2015) Canonical Wnt signaling acts synergistically on BMP9-induced osteo/odontoblastic differentiation of stem cells of dental apical papilla (SCAPs). Biomaterials 39:145–154. doi:10.1016/j.biomaterials.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  126. Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I (2013) Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 17(9):1969–1983. doi:10.1007/s00784-013-1030-3

    Article  CAS  PubMed  Google Scholar 

  127. Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I (2012) Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs 196(6):490–500. doi:10.1159/000338654

    Article  CAS  PubMed  Google Scholar 

  128. Abe S, Yamaguchi S, Amagasa T (2007) Multilineage cells from apical pulp of human tooth with immature apex. Oral Science International 4(1):45–58. doi:10.1016/S1348-8643(07)80011-5

    Article  Google Scholar 

  129. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787–1795. doi:10.1634/stemcells.2007-0979

    Article  CAS  PubMed  Google Scholar 

  130. Karbanova J, Soukup T, Suchanek J, Pytlik R, Corbeil D, Mokry J (2011) Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 193(6):344–365. doi:10.1159/000321160

    Article  PubMed  Google Scholar 

  131. Kiraly M, Porcsalmy B, Pataki A, Kadar K, Jelitai M, Molnar B, Hermann P, Gera I, Grimm WD, Ganss B, Zsembery A, Varga G (2009) Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 55(5):323–332. doi:10.1016/j.neuint.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  132. Kiraly M, Kadar K, Horvathy DB, Nardai P, Racz GZ, Lacza Z, Varga G, Gerber G (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59(3):371–381. doi:10.1016/j.neuint.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  133. Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA (2009) Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells 27(9):2229–2237. doi:10.1002/stem.138

    Article  CAS  PubMed  Google Scholar 

  134. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238(1):120–132. doi:10.1006/dbio.2001.0400

    Article  CAS  PubMed  Google Scholar 

  135. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19(9):2388–2398. doi:10.1111/j.0953-816X.2004.03314.x

    Article  PubMed  Google Scholar 

  136. Huang AH, Snyder BR, Cheng PH, Chan AW (2008) Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26(10):2654–2663. doi:10.1634/stemcells.2008-0285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T (2011) PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 5(10):823–830. doi:10.1002/term.387

    Article  CAS  PubMed  Google Scholar 

  138. Nakashima M, Iohara K (2011) Regeneration of dental pulp by stem cells. Adv Dent Res 23(3):313–319. doi:10.1177/0022034511405323

    Article  CAS  PubMed  Google Scholar 

  139. Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 3(12):1–11. doi:10.1371/journal.pone.0003922

    Article  CAS  Google Scholar 

  140. Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L, Tong EH (2012) Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. J Endod 38(4):454–463. doi:10.1016/j.joen.2011.12.024

    Article  PubMed  Google Scholar 

  141. Barachini S, Danti S, Pacini S, D'Alessandro D, Carnicelli V, Trombi L, Moscato S, Mannari C, Cei S, Petrini M (2014) Plasticity of human dental pulp stromal cells with bioengineering platforms: a versatile tool for regenerative medicine. Micron 67:155–168. doi:10.1016/j.micron.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  142. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M (2008) A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26(9):2408–2418. doi:10.1634/stemcells.2008-0393

    Article  PubMed  Google Scholar 

  143. d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162–1171

    Article  PubMed  CAS  Google Scholar 

  144. Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, Martens W, Lambrichts I (2013) Angiogenic properties of human dental pulp stem cells. PLoS One 8(8):1–11

    Article  CAS  Google Scholar 

  145. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118(2):489–498

    CAS  PubMed  Google Scholar 

  146. Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2(59):re1. doi:10.1126/scisignal.259re1

    Article  PubMed  Google Scholar 

  147. Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nor JE (2010) VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ 17(3):499–512. doi:10.1038/cdd.2009.152

    Article  CAS  PubMed  Google Scholar 

  148. Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, Santos CF, Nor JE (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796. doi:10.1177/0022034510368647

    Article  CAS  PubMed  Google Scholar 

  149. Bento LW, Zhang Z, Imai A, Nor F, Dong Z, Shi S, Araujo FB, Nor JE (2013) Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res 92(1):51–57. doi:10.1177/0022034512466263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li X, Hou J, Wu B, Chen T, Luo A (2014) Effects of platelet-rich plasma and cell coculture on angiogenesis in human dental pulp stem cells and endothelial progenitor cells. J endodont 40(11):1810–1814

    Article  Google Scholar 

  151. Gandia C, Arminan A, García‐Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez‐Torrijos J, Paya R, Mirabet V, Carbonell‐Uberos F (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem cells 26(3):638–645

    Article  PubMed  Google Scholar 

  152. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zammit P, Beauchamp J (2001) The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68(4–5):193–204

    Article  CAS  PubMed  Google Scholar 

  154. Arminan A, Gandia C, Bartual M, Garcia-Verdugo JM, Lledo E, Mirabet V, Llop M, Barea J, Montero JA, Sepulveda P (2009) Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev 18(6):907–918. doi:10.1089/scd.2008.0292

    Article  CAS  PubMed  Google Scholar 

  155. Yang R, Chen M, Lee CH, Yoon R, Lal S, Mao JJ (2010) Clones of ectopic stem cells in the regeneration of muscle defects in vivo. PLoS One 5(10):1–8. doi:10.1371/journal.pone.0013547

    CAS  Google Scholar 

  156. Nakatsuka R, Nozaki T, Uemura Y, Matsuoka Y, Sasaki Y, Shinohara M, Ohura K, Sonoda Y (2010) 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol 55(5):350–357. doi:10.1016/j.archoralbio.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  157. Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Charokopos N, Kalogeridis A, Kouzi-Koliakou K, Kyriakopoulou I, Klonizakis I, Papakonstantinou C (2008) Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thorac Cardiovasc Surg 56(2):77–82. doi:10.1055/s-2007-989328

    Article  CAS  PubMed  Google Scholar 

  158. Ye NS, Chen J, Luo GA, Zhang RL, Zhao YF, Wang YM (2006) Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev 15(5):665–676. doi:10.1089/scd.2006.15.665

    Article  CAS  PubMed  Google Scholar 

  159. Song M, Kim H, Choi Y, Kim K, Chung C (2012) Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars. Korean J Orthod 42(5):249–254. doi:10.4041/kjod.2012.42.5.249

    Article  PubMed  PubMed Central  Google Scholar 

  160. Alsberg E, Hill EE, Mooney DJ (2001) Craniofacial tissue engineering. Crit Rev Oral Biol Med 12(1):64–75

    Article  CAS  PubMed  Google Scholar 

  161. Mao JJ (2005) Stem-cell-driven regeneration of synovial joints. Biol Cell 97(5):289–301. doi:10.1042/bc20040100

    Article  CAS  PubMed  Google Scholar 

  162. Alhadlaq A, Elisseeff JH, Hong L, Williams CG, Caplan AI, Sharma B, Kopher RA, Tomkoria S, Lennon DP, Lopez A, Mao JJ (2004) Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng 32(7):911–923

    Article  PubMed  Google Scholar 

  163. Alhadlaq A, Mao JJ (2005) Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am 87(5):936–944. doi:10.2106/jbjs.d.02104

    Article  PubMed  Google Scholar 

  164. Allen KD, Athanasiou KA (2006) Growth factor effects on passaged TMJ disk cells in monolayer and pellet cultures. Orthod Craniofac Res 9(3):143–152. doi:10.1111/j.1601-6343.2006.00370.x

    Article  CAS  PubMed  Google Scholar 

  165. Detamore MS, Athanasiou KA (2005) Use of a rotating bioreactor toward tissue engineering the temporomandibular joint disc. Tissue Eng 11(7–8):1188–1197. doi:10.1089/ten.2005.11.1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Johns DE, Athanasiou KA (2007) Improving culture conditions for temporomandibular joint disc tissue engineering. Cells Tissues Organs 185(4):246–257. doi:10.1159/000102173

    Article  CAS  PubMed  Google Scholar 

  167. Anderson DE, Athanasiou KA (2009) A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Arch Oral Biol 54(2):138–145. doi:10.1016/j.archoralbio.2008.09.018

    Article  CAS  PubMed  Google Scholar 

  168. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679

    CAS  PubMed  Google Scholar 

  169. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116. doi:10.1159/000099617

    Article  CAS  PubMed  Google Scholar 

  170. Yu J, He H, Tang C, Zhang G, Li Y, Wang R, Shi J, Jin Y (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 11(1):1–7

    Article  CAS  Google Scholar 

  171. Morito A, Kida Y, Suzuki K, Inoue K, Kuroda N, Gomi K, Arai T, Sato T (2009) Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells. Arch Histol Cytol 72(1):51–64

    Article  CAS  PubMed  Google Scholar 

  172. Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506. doi:10.1016/j.joms.2008.09.011

    Article  PubMed  Google Scholar 

  173. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362–369. doi:10.1080/14653240310003026

    Article  PubMed  Google Scholar 

  174. Alhadlaq A, Tang M, Mao JJ (2005) Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng 11(3–4):556–566. doi:10.1089/ten.2005.11.556

    Article  CAS  PubMed  Google Scholar 

  175. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL (2007) Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 28(35):5280–5290. doi:10.1016/j.biomaterials.2007.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Johns DE, Wong ME, Athanasiou KA (2008) Clinically relevant cell sources for TMJ disc engineering. J Dent Res 87(6):548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Khojasteh DMD, MS, PhD Candidate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khojasteh, A., Nazeman, P., Rad, M.R. (2016). Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration. In: Şahin, F., Doğan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_8

Download citation

Publish with us

Policies and ethics