Skip to main content

Immunomodulatory Properties of Stem Cells Derived from Dental Tissues

  • Chapter
  • First Online:
Dental Stem Cells

Abstract

In the last decade, researchers have given great attention to understand the immunomodulatory mechanisms mediated by mesenchymal stem cells (MSCs). In addition to their high proliferative and differentiation features, MSCs can also display strong immunomodulatory roles both in vitro and in vivo, which make them a unique immunotherapeutic agent for the treatment of various autoimmune and inflammation associated diseases. Tissue engineering approaches using dental tissue derived MSCs (DSCs) are recently anticipated in future regenerative therapies. While DSCs use in transplantation studies significantly reduces host immune response against the donor cells, obtainability of DSCs can vary among the individuals. This immunomodulatory role is mainly mediated by T lymphocytes, B lymphocytes, dendritic cells and natural killer cells via interleukin (IL)-2 utilization. In addition, DSCs have promising potential to be used in the treatment of organ transplant refusal and autoimmune inflammatory bowel disorders where immunomodulation and tissue repair activities are both required. In this regard, remarkable immune suppressor properties make DSCs valuable stem cells sources to be used in cell-based therapy approaches in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brooke G, Cook M, Blair C, Han R, Heazlewood C, Jones B, Kambouris M, Kollar K, McTaggart S, Pelekanos R, Rice A, Rossetti T, Atkinson K (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18(6):846–858. doi:10.1016/j.semcdb.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi:10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  3. von der Mark K, Conrad G (1979) Cartilage cell differentiation: review. Clin Orthop Relat Res 139:185–205

    PubMed  Google Scholar 

  4. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402

    Article  CAS  PubMed  Google Scholar 

  5. In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549. doi:10.1182/blood-2003-04-1291

    Article  PubMed  Google Scholar 

  6. Tasli PN, Sahin F (2014) Effect of lactoferrin on odontogenic differentiation of stem cells derived from human 3rd molar tooth germ. Appl Biochem Biotechnol 174(6):2257–2266. doi:10.1007/s12010-014-1204-8

    Article  CAS  PubMed  Google Scholar 

  7. Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, Magness S, Metzger D, Biernaskie J (2014) Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell 31(5):543–558. doi:10.1016/j.devcel.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  8. Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G, Uccelli A (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25(7):1753–1760. doi:10.1634/stemcells.2007-0068

    Article  CAS  PubMed  Google Scholar 

  9. Gucciardo L, Lories R, Ochsenbein-Kolble N, Done E, Zwijsen A, Deprest J (2009) Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG 116(2):166–172. doi:10.1111/j.1471-0528.2008.02005.x

    Article  CAS  PubMed  Google Scholar 

  10. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25(11):2896–2902. doi:10.1634/stemcells.2007-0637

    Article  PubMed  Google Scholar 

  11. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31(10):890–896

    Article  PubMed  CAS  Google Scholar 

  12. Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G, Monroy R, Kurtzberg J (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541. doi:10.1016/j.bbmt.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Zhao Y, Shi S (2012) Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J Dent Res 91(11):1003–1010. doi:10.1177/0022034512460404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. doi:10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  15. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736. doi:10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  16. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544–555. doi:10.1016/j.stem.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729. doi:10.1182/blood-2002-07-2104

    Article  CAS  PubMed  Google Scholar 

  18. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20

    Article  PubMed  Google Scholar 

  19. Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90(4):516–525

    CAS  PubMed  Google Scholar 

  20. Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213. doi:10.1097/01.TP.0000082540.43730.80

    Article  PubMed  Google Scholar 

  21. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi:10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  22. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27(6):1421–1432. doi:10.1002/stem.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19(9):1597–1604. doi:10.1038/sj.leu.2403871

    Article  CAS  PubMed  Google Scholar 

  24. Giuliani M, Fleury M, Vernochet A, Ketroussi F, Clay D, Azzarone B, Lataillade JJ, Durrbach A (2011) Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PLoS One 6(5):e19988. doi:10.1371/journal.pone.0019988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F (2008) The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell Immunol 251(2):131–136. doi:10.1016/j.cellimm.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  26. Siegel G, Schafer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–49. doi:10.1097/TP.0b013e3181a285b0

    Article  PubMed  Google Scholar 

  27. Dahlke MH, Hoogduijn M, Eggenhofer E, Popp FC, Renner P, Slowik P, Rosenauer A, Piso P, Geissler EK, Lange C, Chabannes D, Mazzanti B, Bigenzahn S, Bertolino P, Kunter U, Introna M, Rambaldi A, Capelli C, Perico N, Casiraghi F, Noris M, Gotti E, Seifert M, Saccardi R, Verspaget HW, van Hoek B, Bartholomew A, Wekerle T, Volk HD, Remuzzi G, Deans R, Lazarus H, Schlitt HJ, Baan CC, Group MS (2009) Toward MSC in solid organ transplantation: 2008 position paper of the MISOT study group. Transplantation 88(5):614–619. doi:10.1097/TP.0b013e3181b4425a

    Article  PubMed  Google Scholar 

  28. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48

    Article  PubMed  Google Scholar 

  29. Crop MJ, Baan CC, Korevaar SS, Ijzermans JN, Alwayn IP, Weimar W, Hoogduijn MJ (2009) Donor-derived mesenchymal stem cells suppress alloreactivity of kidney transplant patients. Transplantation 87(6):896–906. doi:10.1097/TP.0b013e31819b3d72

    Article  PubMed  Google Scholar 

  30. Popp FC, Renner P, Eggenhofer E, Slowik P, Geissler EK, Piso P, Schlitt HJ, Dahlke MH (2009) Mesenchymal stem cells as immunomodulators after liver transplantation. Liver Transpl 15(10):1192–1198. doi:10.1002/lt.21862

    Article  PubMed  Google Scholar 

  31. Zhou HP, Yi DH, Yu SQ, Sun GC, Cui Q, Zhu HL, Liu JC, Zhang JZ, Wu TJ (2006) Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc 38(9):3046–3051. doi:10.1016/j.transproceed.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Bartholomew A, Polchert D, Szilagyi E, Douglas GW, Kenyon N (2009) Mesenchymal stem cells in the induction of transplantation tolerance. Transplantation 87(9 Suppl):S55–57. doi:10.1097/TP.0b013e3181a287e6

    Article  PubMed  Google Scholar 

  33. Corry RJ, Chakrabarti PK, Shapiro R, Rao AS, Dvorchik I, Jordan ML, Scantlebury VP, Vivas CA, Fung JJ, Starzl TE (1999) Simultaneous administration of adjuvant donor bone marrow in pancreas transplant recipients. Ann Surg 230(3):372–379, discussion 379–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawai T, Sachs DH, Sprangers B, Spitzer TR, Saidman SL, Zorn E, Tolkoff-Rubin N, Preffer F, Crisalli K, Gao B, Wong W, Morris H, LoCascio SA, Sayre P, Shonts B, Williams WW Jr, Smith RN, Colvin RB, Sykes M, Cosimi AB (2014) Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am J Transplant 14(7):1599–1611. doi:10.1111/ajt.12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, Mullen Y (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37(5):604–615. doi:10.1016/j.exphem.2009.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490. doi:10.1002/eji.200425405

    Article  CAS  PubMed  Google Scholar 

  37. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227. doi:10.1002/ana.21076

    Article  CAS  PubMed  Google Scholar 

  38. Rasmusson I, Le Blanc K, Sundberg B, Ringden O (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65(4):336–343. doi:10.1111/j.1365-3083.2007.01905.x

    Article  CAS  PubMed  Google Scholar 

  39. Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L, Martini A (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26(2):562–569. doi:10.1634/stemcells.2007-0528

    Article  CAS  PubMed  Google Scholar 

  40. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372. doi:10.1182/blood-2005-07-2657

    Article  CAS  PubMed  Google Scholar 

  41. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    Article  CAS  PubMed  Google Scholar 

  42. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83(1):71–76. doi:10.1097/01.tp.0000244572.24780.54

    Article  PubMed  Google Scholar 

  43. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5):1435–1440. doi:10.1182/blood-2006-03-006403

    Article  CAS  PubMed  Google Scholar 

  44. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105(5):2214–2219. doi:10.1182/blood-2004-07-2921

    Article  CAS  PubMed  Google Scholar 

  45. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126. doi:10.1182/blood-2004-02-0586

    Article  CAS  PubMed  Google Scholar 

  46. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49. doi:10.1038/nm.1905

    Article  CAS  PubMed  Google Scholar 

  47. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113(26):6576–6583. doi:10.1182/blood-2009-02-203943

    Article  CAS  PubMed  Google Scholar 

  48. Malhotra A, Shanker A (2011) NK cells: immune cross-talk and therapeutic implications. Immunotherapy 3(10):1143–1166. doi:10.2217/imt.11.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621. doi:10.1182/blood-2003-11-3909

    Article  CAS  PubMed  Google Scholar 

  50. Selmani Z, Naji A, Gaiffe E, Obert L, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2009) HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87(9 Suppl):S62–66. doi:10.1097/TP.0b013e3181a2a4b3

    Article  CAS  PubMed  Google Scholar 

  51. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333. doi:10.1182/blood-2007-02-074997

    Article  CAS  PubMed  Google Scholar 

  52. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–437. doi:10.1146/annurev.cellbio.21.122303.115827

    Article  CAS  PubMed  Google Scholar 

  53. Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36(10):2566–2573. doi:10.1002/eji.200636416

    Article  CAS  PubMed  Google Scholar 

  54. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1(1):5. doi:10.1186/scrt5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630. doi:10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812. doi:10.1073/pnas.0937635100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171. doi:10.1016/j.joen.2007.11.021

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, Mishra GC, Wani MR (2010) Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 393(3):377–383. doi:10.1016/j.bbrc.2010.01.126

    Article  CAS  PubMed  Google Scholar 

  59. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836–842

    Article  PubMed  Google Scholar 

  60. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219(3):667–676. doi:10.1002/jcp.21710

    Article  CAS  PubMed  Google Scholar 

  61. Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Sant’Anna OA, Miglino MA, Zatz M (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 6:35. doi:10.1186/1479-5876-6-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lee S, An S, Kang TH, Kim KH, Chang NH, Kang S, Kwak CK, Park HS (2011) Comparison of mesenchymal-like stem/progenitor cells derived from supernumerary teeth with stem cells from human exfoliated deciduous teeth. Regen Med 6(6):689–699. doi:10.2217/rme.11.95

    Article  PubMed  Google Scholar 

  63. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S (2006) Craniofacial tissue engineering by stem cells. J Dent Res 85(11):966–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 24:253–269

    Article  CAS  Google Scholar 

  65. Pitaru S, Pritzki A, Bar-Kana I, Grosskopf A, Savion N, Narayanan AS (2002) Bone morphogenetic protein 2 induces the expression of cementum attachment protein in human periodontal ligament clones. Connect Tissue Res 43(2–3):257–264

    Article  CAS  PubMed  Google Scholar 

  66. Kim HS, Kim KH, Kim SH, Kim YS, Koo KT, Kim TI, Seol YJ, Ku Y, Rhyu IC, Chung CP, Lee YM (2010) Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells. J Periodontal Implant Sci 40(6):265–270. doi:10.5051/jpis.2010.40.6.265

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu D, Xu J, Liu O, Fan Z, Liu Y, Wang F, Ding G, Wei F, Zhang C, Wang S (2012) Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation. J Clin Periodontol 39(12):1174–1182. doi:10.1111/jcpe.12009

    Article  CAS  PubMed  Google Scholar 

  68. Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, Palotas A, Kose GT (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics J 10(2):105–113. doi:10.1038/tpj.2009.40

    Article  CAS  PubMed  Google Scholar 

  69. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  CAS  PubMed  Google Scholar 

  70. Guven EP, Tasli PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F (2013) In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 46(12):1173–1182. doi:10.1111/iej.12115

    Article  CAS  PubMed  Google Scholar 

  71. Guven EP, Tasli PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F (2013) In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 46:1173–1182. doi:10.1111/iej.12115

    Article  CAS  PubMed  Google Scholar 

  72. Dogan A, Demirci S, Sahin F (2015) In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int 39(1):94–103. doi:10.1002/cbin.10357

    Article  CAS  PubMed  Google Scholar 

  73. Guzman-Uribe D, Estrada KN, Guillen Ade J, Perez SM, Ibanez RR (2012) Development of a three-dimensional tissue construct from dental human ectomesenchymal stem cells: in vitro and in vivo study. Open Dent J 6:226–234. doi:10.2174/1874210601206010226

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183(12):7787–7798. doi:10.4049/jimmunol.0902318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ravanidis S, Bogie JF, Donders R, Craeye D, Mays RW, Deans R, Gijbels K, Bronckaers A, Stinissen P, Pinxteren J, Hellings N (2015) Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells. Stem Cell Res Ther 6(1):176. doi:10.1186/s13287-015-0169-z

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868. doi:10.1002/stem.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Su WR, Zhang QZ, Shi SH, Nguyen AL, Le AD (2011) Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms. Stem Cells 29(11):1849–1860. doi:10.1002/stem.738

    Article  CAS  PubMed  Google Scholar 

  78. Ren G, Su J, Zhang L, Zhao X, Ling W, L’Huillie A, Zhang J, Lu Y, Roberts AI, Ji W, Zhang H, Rabson AB, Shi Y (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27(8):1954–1962. doi:10.1002/stem.118

    Article  CAS  PubMed  Google Scholar 

  79. Sattler C, Steinsdoerfer M, Offers M, Fischer E, Schierl R, Heseler K, Daubener W, Seissler J (2011) Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transplant 20(8):1221–1230. doi:10.3727/096368910X546553

    Article  PubMed  Google Scholar 

  80. Tasli PN, Aydin S, Yalvac ME, Sahin F (2014) Bmp 2 and Bmp 7 ınduce odonto- and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol 172(6):3016–3025. doi:10.1007/s12010-013-0706-0

    Article  CAS  PubMed  Google Scholar 

  81. Kawanabe N, Murata S, Fukushima H, Ishihara Y, Yanagita T, Yanagita E, Ono M, Kurosaka H, Kamioka H, Itoh T (2012) Stage-specific embryonic antigen-4 identifies human dental pulp stem cells. Exp Cell Res 318(5):453–463

    Article  CAS  PubMed  Google Scholar 

  82. Dennis JE, Carbillet J-P, Caplan AI, Charbord P (2001) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82

    Article  Google Scholar 

  83. Laino G, Carinci F, Graziano A, d’Aquino R, Lanza V, De Rosa A, Gombos F, Caruso F, Guida L, Rullo R (2006) In vitro bone production using stem cells derived from human dental pulp. J Craniofac Surg 17(3):511–515

    Article  PubMed  Google Scholar 

  84. Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G (2006) An approachable human adult stem cell source for hard‐tissue engineering. J Cell Physiol 206(3):693–701

    Article  CAS  PubMed  Google Scholar 

  85. Lin L, Rosenberg P (2011) Repair and regeneration in endodontics. Int Endod J 44(10):889–906

    Article  CAS  PubMed  Google Scholar 

  86. Leprince J, Zeitlin B, Tolar M, Peters O (2012) Interactions between immune system and mesenchymal stem cells in dental pulp and periapical tissues. Int Endod J 45(8):689–701

    Article  CAS  PubMed  Google Scholar 

  87. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  CAS  PubMed  Google Scholar 

  88. Docheva D, Haasters F, Schieker M (2008) Mesenchymal stem cells and their cell surface receptors. Curr Rheumatol Rev 4(3):155–160

    Article  CAS  Google Scholar 

  89. Huang CH, Tseng WY, Yao CC, Jeng JH, Young TH, Chen YJ (2010) Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor‐β type I receptor. J Cell Physiol 225(1):140–151

    Article  CAS  PubMed  Google Scholar 

  90. Huang G-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  92. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT-J (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Article  PubMed  PubMed Central  Google Scholar 

  93. Suzuki T, Lee C, Chen M, Zhao W, Fu S, Qi J, Chotkowski G, Eisig S, Wong A, Mao J (2011) Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 90(8):1013–1018

    Article  CAS  PubMed  Google Scholar 

  94. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  95. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12(1):47–57

    Article  CAS  PubMed  Google Scholar 

  96. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, Colic M (2010) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev 20(4):695–708

    Article  CAS  Google Scholar 

  97. Ding G, Liu Y, An Y, Zhang C, Shi S, Wang W, Wang S (2010) Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells Tissues Organs 191(5):357

    Article  PubMed  Google Scholar 

  98. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836–842

    Article  PubMed  Google Scholar 

  99. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219(3):667–676

    Article  CAS  PubMed  Google Scholar 

  100. NIH (2014) Prochymal™ adult human mesenchymal stem cells for treatment of moderate-to-severe crohn’s disease. https://clinicaltrials.gov/ct2/show/NCT00294112?term=mesenchymal+stem+cells+immunosuppressive&rank=9. Accessed 12 Aug 2015

  101. NIH (2014) Treatment of chronic graft-versus-host disease with mesenchymal stromal cells (MSC-cGvHD). https://clinicaltrials.gov/ct2/show/NCT02291770?term=mesenchymal+stem+cells+immunosuppression&rank=7. Accessed 12 Aug 2015

  102. NIH (2013) Mesenchymal stem cells after renal or liver transplantation. https://clinicaltrials.gov/ct2/show/NCT01429038?term=mesenchymal+stem+cells+immunosuppression&rank=3. Accessed 12 Aug 2015

  103. Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotas A (2009) Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des 15(33):3908–3916

    Article  CAS  PubMed  Google Scholar 

  104. Bansal R, Jain A (2015) Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med 6(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19(9):2388–2398. doi:10.1111/j.0953-816X.2004.03314.x

    Article  PubMed  Google Scholar 

  106. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238(1):120–132. doi:10.1006/dbio.2001.0400

    Article  CAS  PubMed  Google Scholar 

  107. Akira S, Sato S (2003) Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 35(9):555–562

    Article  CAS  PubMed  Google Scholar 

  108. Miggin SM, O’Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80(2):220–226. doi:10.1189/jlb.1105672

    Article  CAS  PubMed  Google Scholar 

  109. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. doi:10.1146/annurev.immunol.21.120601.141126

    Article  CAS  PubMed  Google Scholar 

  110. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an ımmunosuppressive MSC2 phenotype. PLoS One 5(4):e10088. doi:10.1371/journal.pone.0010088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26(1):279–289. doi:10.1634/stemcells.2007-0454

    Article  CAS  PubMed  Google Scholar 

  112. Ding G, Liu Y, An Y, Zhang C, Shi S, Wang W, Wang S (2010) Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells Tissues Organs 191(5):357–364. doi:10.1159/000276589

    Article  PubMed  Google Scholar 

  113. Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20(5):510–518. doi:10.1038/cr.2010.44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Şahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taşlı, P.N., Aydın, S., Şahin, F. (2016). Immunomodulatory Properties of Stem Cells Derived from Dental Tissues. In: Şahin, F., Doğan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_2

Download citation

Publish with us

Policies and ethics