Skip to main content

Dental and Craniofacial Tissue Stem Cells: Sources and Tissue Engineering Applications

  • Chapter
  • First Online:
Dental Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 960 Accesses

Abstract

Current progress in stem cell and tissue engineering technologies is now providing significant underpinning evidence for its future clinical applications. Advances are aimed at clinical translation to enable repair and regeneration of dental and craniofacial tissues, such as teeth, periodontal tissues and salivary glands, which require treatment following disease, trauma or developmental abnormalities. The foundations for current progress come from our knowledge of basic biological processes, in particular growth factor and morphogenic signalling, which occur during the epithelial-mesenchymal interactions which drive tissue development and organogenesis. Convergent with our molecular and cellular understanding is the progress in biomaterials and scaffold development which aim to enable the delivery and differentiation processes necessary for hard and soft tissue regeneration. Adult or postnatal mesenchymal stem cells necessary for these processes can self-renew and generate the appropriate differentiated cell types. The dental and craniofacial tissues provide a rich source of these stem cells for tissue regeneration both locally and throughout the body. These cells can also be used in genetic reprogramming technology to generate induced pluripotent stem cells. This chapter discusses current knowledge relating to the multiple types of dental and craniofacial stem cells, their accessibility and potential applications along with the underpinning evidence which supports their future promise. Furthermore, there still remain challenges to their routine application, such as standardisation of laboratory and clinical protocols, biobanking approaches, provision of Good manufacturing practice (GMP)-compliant environments and the necessary education of the dental team to enable research and clinical application in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADSCs:

Adipose stromal/stem cells

BMP:

Bone morphogenetic protein

BMMSCs:

Bone marrow stromal cells

DFSCs:

Dental follicle stem cells

DSCs:

Dental stem cells

DPSCs:

Dental pulp stem cells

EGF:

Epidermal growth factor

DMP1:

Dentin matrix protein 1

DSPP:

Dentin sialophosphoprotein

ESC:

Embryonic stem cell

FBS:

Fetal bovine serum

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

GMP:

Good manufacturing practice

GMSCs:

Gingiva-derived MSCs

HERS:

Hertwig’s epithelial root sheath

HS:

Human serum

IEE:

Inner enamel epithelium

iPSC:

Induced pluripotent stem cell

OEE:

Outer enamel epithelium

OESCs:

Oral epithelial progenitor/stem cells

PDL:

Periodontal ligament

PDLSCs:

Periodontal ligament stem cells

PSCs:

Periosteum-derived stem cells

SCAPs:

Stem cells from apical papilla

SGSCs:

Salivary gland-derived stem cells

SHEDs:

Stem cells from human exfoliated deciduous teeth

Shh:

Sonic hedgehog

SR:

Stellate reticulum

TGF-β:

Transforming growth factor-β

TGPCs:

Tooth germ progenitor cells

TMJ:

Temporomandibular joint

VEGF:

Vascular endothelial growth factor

References

  1. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  2. Da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  CAS  Google Scholar 

  3. Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    Article  CAS  PubMed  Google Scholar 

  4. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

    Article  CAS  PubMed  Google Scholar 

  5. Slack JM (2008) Origin of stem cells in organogenesis. Science 322:1498–1501

    Article  CAS  PubMed  Google Scholar 

  6. Lakshmipathy U, Verfaillie C (2005) Stem cell plasticity. Blood Rev 19:29–38

    Article  PubMed  Google Scholar 

  7. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Okita K, Nakagawa M et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    Article  CAS  PubMed  Google Scholar 

  9. Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang GT, Sonoyama W, Liu Y et al (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34:645–651

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sonoyama W, Liu Y, Fang D et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1, e79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sonoyama W, Liu Y, Yamaza T et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  13. Honda MJ, Imaizumi M, Tsuchiya S et al (2010) Dental follicle stem cells and tissue engineering. J Oral Sci 52:541–552

    Article  PubMed  Google Scholar 

  14. Morsczeck C, Gotz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  CAS  PubMed  Google Scholar 

  15. Park BW, Kang EJ, Byun JH et al (2012) In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 83:249–259

    Article  CAS  PubMed  Google Scholar 

  16. Yao S, Pan F, Prpic V et al (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87:767–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  18. Seo BM, Miura M, Sonoyama W et al (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84:907–912

    Article  PubMed  Google Scholar 

  19. Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikeda E, Yagi K, Kojima M et al (2008) Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76:495–505

    Article  CAS  PubMed  Google Scholar 

  21. Izumi K, Inoki K, Fujimori Y et al (2009) Pharmacological retention of oral mucosa progenitor/stem cells. J Dent Res 88:1113–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marynka-Kalmani K, Treves S, Yafee M et al (2010) The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 28:984–995

    CAS  PubMed  Google Scholar 

  23. Zhang Q, Shi S, Liu Y et al (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim SM, Choi YS, Shin HC et al (2005) Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis. Biotechnol Lett 27:607–611

    Article  CAS  PubMed  Google Scholar 

  25. Denny PC, Denny PA (1999) Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec 254:408–417

    Article  CAS  PubMed  Google Scholar 

  26. Kishi T, Takao T, Fujita K et al (2006) Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun 340:544–552

    Article  CAS  PubMed  Google Scholar 

  27. Man YG, Ball WD, Marchetti L et al (2001) Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec 263:202–214

    Article  CAS  PubMed  Google Scholar 

  28. Derubeis AR, Cancedda R (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32:160–165

    Article  PubMed  Google Scholar 

  29. Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30:804–810

    Article  CAS  PubMed  Google Scholar 

  30. Horwitz EM, Le Blanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  31. Battula VL, Treml S, Bareiss PM et al (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94:173–184

    Article  CAS  PubMed  Google Scholar 

  32. Buhring HJ, Battula VL, Treml S et al (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106:262–271

    Article  PubMed  CAS  Google Scholar 

  33. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  34. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  35. Zannettino AC, Paton S, Kortesidis A et al (2007) Human multipotential mesenchymal/stromal stem cells are derived from a discrete subpopulation of STRO-1bright/CD34 /CD45(−)/glycophorin-A-bone marrow cells. Haematologica 92:1707–1708

    Article  PubMed  Google Scholar 

  36. Laino G, D'aquino R, Graziano A et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402

    Article  PubMed  CAS  Google Scholar 

  37. Nakashima M, Iohara K, Sugiyama M (2009) Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev 20:435–440

    Article  CAS  PubMed  Google Scholar 

  38. Yang X, Van Den Dolder J, Walboomers XF et al (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1:66–73

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Zhang W, Van Den Dolder J et al (2007) Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J Tissue Eng Regen Med 1:128–135

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Walboomers XF, Van Kuppevelt TH et al (2006) The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 27:5658–5668

    Article  CAS  PubMed  Google Scholar 

  41. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  42. Carrion B, Huang CP, Ghajar CM et al (2010) Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnol Bioeng 107:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsuchiya K, Chen G, Ushida T et al (2001) Effects of cell adhesion molecules on adhesion of chondrocytes, ligament cells and mesenchymal stem cells. Mater Sci Eng C 17:79–82

    Article  Google Scholar 

  44. Waddington RJ, Youde SJ, Lee CP et al (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189:268–274

    Article  PubMed  Google Scholar 

  45. Zhu Q, Safavi KE, Spangberg LS (1998) Integrin expression in human dental pulp cells and their role in cell attachment on extracellular matrix proteins. J Endod 24:641–644

    Article  CAS  PubMed  Google Scholar 

  46. Thesleff I, Partanen AM, Vainio S (1991) Epithelial-mesenchymal interactions in tooth morphogenesis: the roles of extracellular matrix, growth factors, and cell surface receptors. J Craniofac Genet Dev Biol 11:229–237

    CAS  PubMed  Google Scholar 

  47. Jussila M, Thesleff I (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 4:a008425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jung HS, Francis-West PH, Widelitz RB et al (1998) Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol 196:11–23

    Article  CAS  PubMed  Google Scholar 

  49. Sarkar L, Cobourne M, Naylor S et al (2000) Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A 97:4520–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Åberg T, Wang XP, Kim JH et al (2004) Runx2 mediates FGF signalling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270:76–93

    Article  PubMed  CAS  Google Scholar 

  51. Chen Y, Zhang Y, Jiang TX et al (2000) Conservation of early odontogenic signaling pathways in Aves. Proc Natl Acad Sci U S A 97:10044–10049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mostowska A, Kobielak A, Trzeciak WH (2003) Molecular basis of non-syndromic tooth agenesis: mutations of MSX1 and PAX9 reflect their role in patterning human dentition. Eur J Oral Sci 111:365–370

    Article  CAS  PubMed  Google Scholar 

  53. Mina M, Kollar EJ (1987) The induction of odontogenesis in non-odontogenic mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 32:123–127

    Article  CAS  PubMed  Google Scholar 

  54. Ferguson C, Tucker AS, Christensen L et al (1998) Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev 12:2636–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jernvall J, Åberg T, Kettunen P et al (1998) The life history of an embryonic signaling center: BMP4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169

    CAS  PubMed  Google Scholar 

  56. Vaahtokari A, Åberg T, Jernvall J et al (1996) The enamel knot as a signaling centre in the developing mouse tooth. Mech Dev 54:39–43

    Article  CAS  PubMed  Google Scholar 

  57. Slavkin HC (1974) Embryonic tooth formation. A tool for developmental biology. Oral Sci Rev 4:7–136

    CAS  PubMed  Google Scholar 

  58. Coin R, Lesot H, Vonesch JL et al (1999) Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area. Int J Dev Biol 43:261–267

    CAS  PubMed  Google Scholar 

  59. Lyngstadaas SP, Møinichen CB, Risnes S (1998) Crown morphology, enamel distribution, and enamel structure in mouse molars. Anat Rec 250:268–280

    Article  CAS  PubMed  Google Scholar 

  60. Salazar-Ciudad I, Jernvall J (2002) A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci U S A 99:8116–8120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Slavkin HC (1991) Molecular determinants during dental morphogenesis and cytodifferentiation: a review. J Craniofac Genet Dev Biol 11:338–349

    CAS  PubMed  Google Scholar 

  62. Goldberg M, Septier D, Lécolle S et al (1995) Dental mineralization. Int J Dev Biol 39:93–110

    CAS  PubMed  Google Scholar 

  63. Marks SC Jr, Schroeder HE (1996) Tooth eruption: theories and facts. Anat Rec 245:374–393

    Article  PubMed  Google Scholar 

  64. Simon SR, Berdal A, Cooper PR et al (2011) Dentin-pulp complex regeneration: from lab to clinic. Adv Dent Res 23:340–345

    Article  CAS  PubMed  Google Scholar 

  65. Smith AJ, Cassidy N, Perry H et al (1995) Reactionary dentinogenesis. Int J Dev Biol 39:273–280

    CAS  PubMed  Google Scholar 

  66. Smith AJ, Lumley PJ, Tomson PL et al (2008) Dental regeneration and materials: a partnership. Clin Oral Investig 12:103–108

    Article  CAS  PubMed  Google Scholar 

  67. Ferracane JL, Cooper PR, Smith AJ (2010) Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? Odontology 98:2–14

    Article  CAS  PubMed  Google Scholar 

  68. Smith AJ, Scheven BA, Takahashi Y et al (2012) Dentine as a bioactive extracellular matrix. Arch Oral Biol 57:109–121

    Article  CAS  PubMed  Google Scholar 

  69. Frozoni M, Zaia AA, Line SR et al (2012) Analysis of the contribution of nonresident progenitor cells and hematopoietic cells to reparative dentinogenesis using parabiosis model in mice. J Endod 38:1214–1219

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  71. Dezawa M, Kanno H, Hoshino M et al (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Akintoye SO, Lam T, Shi S et al (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768

    Article  CAS  PubMed  Google Scholar 

  73. Chai Y, Jiang X, Ito Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    CAS  PubMed  Google Scholar 

  74. Igarashi A, Segoshi K, Sakai Y et al (2007) Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng 13:2405–2417

    Article  CAS  PubMed  Google Scholar 

  75. Hung CN, Mar K, Chang HC et al (2011) A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials 32:6995–7005

    Article  CAS  PubMed  Google Scholar 

  76. Ishizaka R, Iohara K, Murakami M et al (2012) Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials 33:2109–2118

    Article  CAS  PubMed  Google Scholar 

  77. Tobita M, Uysal AC, Ogawa R et al (2008) Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng Part A 14:945–953

    Article  CAS  PubMed  Google Scholar 

  78. Wen X, Nie X, Zhang L et al (2011) Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro. Biochem Biophys Res Commun 409:583–589

    Article  CAS  PubMed  Google Scholar 

  79. Gronthos S, Brahim J, Li W et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  CAS  PubMed  Google Scholar 

  80. Kaukua N, Shahidi MK, Konstantinidou C et al (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513:551–554

    Article  CAS  PubMed  Google Scholar 

  81. Wang L, Shen H, Zheng W et al (2011) Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A 17:1015–1026

    Article  CAS  PubMed  Google Scholar 

  82. Oda Y, Yoshimura Y, Ohnishi H et al (2010) Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285:29270–29278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Bari C, Dell‘Accio F, Vanlauwe J et al (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221

    Article  PubMed  CAS  Google Scholar 

  84. Sakaguchi Y, Sekiya I, Yagishita K et al (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  PubMed  Google Scholar 

  85. Wang Q, Huang C, Zeng F et al (2010) Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol 177:3100–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nagata M, Hoshina H, Li M et al (2012) A clinical study of alveolar bone tissue engineering with cultured autogenous periosteal cells: coordinated activation of bone formation and resorption. Bone 50:1123–1129

    Article  PubMed  Google Scholar 

  87. Schmelzeisen R, Schimming R, Sittinger M (2003) Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation – a preliminary report. J Craniomaxillofac Surg 31:34–39

    Article  PubMed  Google Scholar 

  88. Soltan M, Smiler D, Soltan C (2009) The inverted periosteal flap: a source of stem cells enhancing bone regeneration. Implant Dent 18:373–379

    Article  PubMed  Google Scholar 

  89. Lombaert IM, Brunsting JF, Wierenga PK et al (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3, e2063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Matsumoto S, Okumura K, Ogata A et al (2007) Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells 9:176–190

    Article  CAS  PubMed  Google Scholar 

  91. Sato A, Okumura K, Matsumoto S et al (2007) Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning Stem Cells 9:191–205

    Article  CAS  PubMed  Google Scholar 

  92. Nanduri LS, Maimets M, Pringle SA et al (2011) Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol 99:367–372

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  94. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  95. Egusa H, Okita K, Kayashima H et al (2010) Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 5, e12743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Miyoshi K, Tsuji D, Kudoh K et al (2010) Generation of human induced pluripotent stem cells from oral mucosa. J Biosci Bioeng 110:345–350

    Article  CAS  PubMed  Google Scholar 

  97. Tamaoki N, Takahashi K, Tanaka T et al (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89:773–778

    Article  CAS  PubMed  Google Scholar 

  98. Wada N, Wang B, Lin NH et al (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46:438–447

    Article  CAS  PubMed  Google Scholar 

  99. Yan X, Qin H, Qu C et al (2010) iPS cells reprogrammed from mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arakaki M, Ishikawa M, Nakamura T et al (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287:10590–10601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Duan X, Tu Q, Zhang J, Ye J et al (2011) Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 226:150–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Otsu K, Kishigami R, Oikawa-Sasaki A et al (2011) Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev 21:1156–1164

    Article  PubMed  CAS  Google Scholar 

  103. Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  CAS  PubMed  Google Scholar 

  104. Cao F, Drukker M, Lin S et al (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9:107–117

    Article  CAS  PubMed  Google Scholar 

  105. Huangfu D, Maehr R, Guo W et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  CAS  PubMed  Google Scholar 

  106. Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275

    Article  CAS  PubMed  Google Scholar 

  107. Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  CAS  PubMed  Google Scholar 

  109. Nakagawa M, Takizawa N, Narita M et al (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A 107:14152–14157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  PubMed  Google Scholar 

  111. Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a suicide gene. Stem Cells 21:257–265

    Article  CAS  PubMed  Google Scholar 

  112. Tang C, Lee AS, Volkmer JP et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718

    Article  PubMed  Google Scholar 

  115. Gottlow J, Nyman S, Lindhe J et al (1986) New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 13:604–616

    Article  CAS  PubMed  Google Scholar 

  116. Karring T, Nyman S, Gottlow J et al (1993) Development of the biological concept of guided tissue regeneration – animal and human studies. Periodontology 2000(1):26–35

    Article  Google Scholar 

  117. Le Geros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753

    Article  CAS  Google Scholar 

  118. Nyman S, Gottlow J, Lindhe J et al (1987) New attachment formation by guided tissue regeneration. J Periodontal Res 22:252–254

    Article  CAS  PubMed  Google Scholar 

  119. Darby I (2011) Periodontal materials. Aust Dent J 56:107–118

    Article  PubMed  Google Scholar 

  120. Klinge B, Flemmig TF (2009) Tissue augmentation and esthetics (Working Group 3). Clin Oral Implants Res 20:166–170

    Article  PubMed  Google Scholar 

  121. Kubo T, Doi K, Hayashi K et al (2011) Comparative evaluation of bone regeneration using spherical and irregularly shaped granules of interconnected porous hydroxylapatite. A beagle dog study. J Prosthodont Res 55:104–109

    Article  PubMed  Google Scholar 

  122. Le Geros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  Google Scholar 

  123. MacIntosh AC, Kearns VR, Crawford A et al (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2:71–80

    Article  CAS  PubMed  Google Scholar 

  124. Mandal BB, Grinberg A, Gil ES et al (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci U S A 109:7699–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20:646–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Honda MJ, Tsuchiya S, Sumita Y et al (2007) The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 28:680–689

    Article  CAS  PubMed  Google Scholar 

  127. Sumita Y, Honda MJ, Ohara T et al (2006) Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 27:3238–3248

    Article  CAS  PubMed  Google Scholar 

  128. Almushayt A, Narayanan K, Zaki AE et al (2006) Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13:611–620

    Article  CAS  PubMed  Google Scholar 

  129. Cordeiro MM, Dong Z, Kaneko T et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–969

    Article  PubMed  Google Scholar 

  130. Galler KM, Cavender A, Yuwono V et al (2008) Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Eng Part A 14:2051–2058

    Article  CAS  PubMed  Google Scholar 

  131. Smith AJ, Tobias RS, Plant CG et al (1990) In vivo morphogenetic activity of dentine matrix proteins. J Biol Buccale 18:123–129

    CAS  PubMed  Google Scholar 

  132. Smith AJ, Tobias RS, Cassidy N et al (1994) Odontoblast stimulation in ferrets by dentine matrix components. Arch Oral Biol 39:13–22

    Article  CAS  PubMed  Google Scholar 

  133. Intini G (2009) The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials 30:4956–4966

    Article  CAS  PubMed  Google Scholar 

  134. Hammarstrom L (1997) Enamel matrix, cementum development and regeneration. J Clin Periodontol 24:658–668

    Article  CAS  PubMed  Google Scholar 

  135. Kawase T, Okuda K, Yoshie H et al (2000) Cytostatic action of enamel matrix derivative (EMDOGAIN) on human oral squamous cell carcinoma- derived SCC25 epithelial cells. J Periodontal Res 35:291–300

    Article  CAS  PubMed  Google Scholar 

  136. Sculean A, Schwarz F, Becker J et al (2007) The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review. Med Princ Pract 16:167–180

    Article  PubMed  Google Scholar 

  137. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Javed F, Al-Askar M, Al-Rasheed A et al (2011) Significance of the platelet-derived growth factor in periodontal tissue regeneration. Arch Oral Biol 56:1476–1484

    Article  CAS  PubMed  Google Scholar 

  139. Kaigler D, Avila G, Wisner-Lynch L et al (2011) Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther 11:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kitamura M, Akamatsu M, Machigashira M et al (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90:35–40

    Article  CAS  PubMed  Google Scholar 

  141. Murakami S (2011) Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontology 2000(56):188–208

    Article  Google Scholar 

  142. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    Article  CAS  PubMed  Google Scholar 

  143. Taba M Jr, Jin Q, Sugai JV et al (2005) Current concepts in periodontal bioengineering. Orthod Craniofac Res 8:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tsuji K, Bandyopadhyay A, Harfe BD et al (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38:1424–1429

    Article  CAS  PubMed  Google Scholar 

  145. Wikesjo UM, Qahash M, Huang YH et al (2009) Bone morphogenetic proteins for periodontal and alveolar indications; biological observations – clinical implications. Orthod Craniofac Res 12:263–270

    Article  CAS  PubMed  Google Scholar 

  146. El Omar R, Beroud J, Stoltz JF et al (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20:523–544

    Article  PubMed  Google Scholar 

  147. Cooper PR, Holder MJ, Smith AJ (2014) Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 40:S46–S51

    Article  PubMed  Google Scholar 

  148. Mead B, Logan A, Berry M et al (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556

    Article  CAS  PubMed  Google Scholar 

  149. Yang B, Chen G, Li J, Zou Q et al (2012) Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold. Biomaterials 33:2449–2461

    Article  CAS  PubMed  Google Scholar 

  150. Duailibi MT, Duailibi SE, Young CS et al (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83:523–528

    Article  CAS  PubMed  Google Scholar 

  151. Ikeda E, Morita R, Nakao K et al (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A 106:13475–13480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ohazama A, Modino SA, Miletich I et al (2004) Stem-cell-based tissue engineering of murine teeth. J Dent Res 83:518–522

    Article  CAS  PubMed  Google Scholar 

  153. Oshima M, Mizuno M, Imamura A et al (2011) Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One 6, e21531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Young CS, Abukawa H, Asrican R et al (2005) Tissue-engineered hybrid tooth and bone. Tissue Eng 11:1599–1610

    Article  CAS  PubMed  Google Scholar 

  155. Volponi A, Kawasaki M, Sharpe PT (2013) Adult human gingival epithelial cells as a source for whole-tooth bioengineering. J Dent Res 92:329–334

    Article  CAS  Google Scholar 

  156. Kojima T, Kanemaru S, Hirano S et al (2011) Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. Laryngoscope 121:1864–1869

    PubMed  Google Scholar 

  157. Sumita Y, Liu Y, Khalili S et al (2011) Bone marrow derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol 43:80–87

    Article  CAS  PubMed  Google Scholar 

  158. Alhadlaq A, Mao JJ (2003) Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells. J Dent Res 82:951–956

    Article  CAS  PubMed  Google Scholar 

  159. Alhadlaq A, Elisseeff JH, Hong L et al (2004) Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng 32:911–923

    Article  PubMed  Google Scholar 

  160. El-Bialy T, Uludag H, Jomha N et al (2010) In vivo ultrasound-assisted tissue-engineered mandibular condyle: a pilot study in rabbits. Tissue Eng Part C Methods 16:1315–1323

    Article  PubMed  Google Scholar 

  161. Bunaprasert T, Hadlock T, Marler J et al (2003) Tissue engineered muscle implantation for tongue reconstruction: a preliminary report. Laryngoscope 113:1792–1797

    Article  PubMed  Google Scholar 

  162. Egusa H, Kobayashi M, Matsumoto T et al (2013) Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment. Tissue Eng Part A 19:770–782

    Article  CAS  PubMed  Google Scholar 

  163. Luxameechanporn T, Hadlock T, Shyu J et al (2006) Successful myoblast transplantation in rat tongue reconstruction. Head Neck 28:517–524

    Article  PubMed  Google Scholar 

  164. Bansal R, Jain A (2015) Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med 6:29–34

    PubMed  PubMed Central  Google Scholar 

  165. Davies OG, Smith AJ, Cooper PR et al (2014) The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology 69:342–347

    Article  CAS  PubMed  Google Scholar 

  166. Chen B, Wright B, Sahoo R et al (2013) A novel alternative to cryopreservation for the short-term storage of stem cells for use in cell therapy using alginate encapsulation. Tissue Eng Part C Methods 19:568–576

    Article  CAS  PubMed  Google Scholar 

  167. Liu BL, McGrath JJ (2005) Ice formation of vitrification solutions for cryopreservation of tissues. Conf Proc IEEE Eng Med Biol Soc 7:7501–7504

    CAS  PubMed  Google Scholar 

  168. Fekete N, Rojewski MT, Fürst D et al (2012) GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One 7, e43255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. D’Ippolito G, Schiller PC, Ricordi C et al (1999) Agerelated osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122

    Article  PubMed  Google Scholar 

  170. Phinney DG, Kopen G, Righter W et al (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:424–436

    Article  CAS  PubMed  Google Scholar 

  171. Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Patel M, Smith AJ, Sloan AJ et al (2009) Phenotype and behaviour of dental pulp cells during expansion culture. Arch Oral Biol 54:898–908

    Article  CAS  PubMed  Google Scholar 

  173. Stevens A, Zuliani T, Olejnik C et al (2008) Human dental pulp stem cells differentiate into neural crest derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17:1175–1184

    Article  PubMed  Google Scholar 

  174. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–355

    Article  CAS  PubMed  Google Scholar 

  175. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kuznetsov SA, Mankani MH, Robey PG (2000) Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70:1780–1787

    Article  CAS  PubMed  Google Scholar 

  177. Schallmoser K, Strunk D (2013) Generation of a pool of human platelet lysate and efficient use in cell culture. Methods Mol Biol 946:349–362

    Article  CAS  PubMed  Google Scholar 

  178. Stute N, Holtz K, Bubenheim M et al (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225

    Article  CAS  PubMed  Google Scholar 

  179. Yamada Y, Ueda M, Hibi H et al (2004) Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant 13:343–355

    Article  PubMed  Google Scholar 

  180. Agata H, Watanabe N, Ishii Y et al (2009) Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions. Biochem Biophys Res Commun 382:353–358

    Article  CAS  PubMed  Google Scholar 

  181. Chase LG, Lakshmipathy U, Solchaga LA et al (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Chase LG, Yang S, Zachar V et al (2012) Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Transl Med 1:750–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lindroos B, Boucher S, Chase L et al (2009) Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11:958–972

    Article  CAS  PubMed  Google Scholar 

  184. Kato R, Iejima D, Agata H et al (2010) A compact, automated cell culture system for clinical scale cell expansion from primary tissues. Tissue Eng Part C Methods 16:947–956

    Article  CAS  PubMed  Google Scholar 

  185. Kino-Oka M, Ogawa N, Umegaki R et al (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11:535–545

    Article  CAS  PubMed  Google Scholar 

  186. Koller MR, Manchel I, Maher RJ et al (1998) Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant 21:653–663

    Article  CAS  PubMed  Google Scholar 

  187. Rayment EA, Williams DJ (2010) Concise review: mind the gap: challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 28:996–1004

    PubMed  PubMed Central  Google Scholar 

  188. Bernardo ME, Zaffaroni N, Novara F et al (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cooper, P.R. (2016). Dental and Craniofacial Tissue Stem Cells: Sources and Tissue Engineering Applications. In: Åžahin, F., DoÄŸan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_1

Download citation

Publish with us

Policies and ethics