Skip to main content

Smoothing Temporal Difference for Text Categorization

  • Conference paper
  • First Online:
  • 788 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9460))

Abstract

This paper addresses text categorization problem that training data may be derived from a different time period than test data. We present a method for text categorization that minimizes the impact of temporal effects by using term smoothing and transfer learning techniques. We first used a technique called Temporal-based Term Smoothing (TTS) to replace those time sensitive features with representative terms, then applied boosting based transfer learning algorithm called TrAdaBoost for categorization. The results using a 21-year Japanese Mainichi Newspaper corpus showed that integrating term smoothing and transfer learning improves overall performance, especially it is effective when the creation time period of the test data differs greatly from the training data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/transfer.workshop.1995.html.

References

  1. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 120–128 (2006)

    Google Scholar 

  2. Dai, W., Xue, G.R., Yang, Q., Yu, Y.: Co-clustering based classification for out-of-domain documents. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 210–219 (2007)

    Google Scholar 

  3. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 193–200 (2007)

    Google Scholar 

  4. Daume III, H.: Frustratingly easy domain adaptation. In: Proceedings of the 45th Annual Meeting of the Association of computational Linguistics, pp. 256–263 (2007)

    Google Scholar 

  5. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: Proceedings of the KDD 2008, pp. 213–220 (2008)

    Google Scholar 

  6. Folino, G., Pizzuti, C., Spezzano, G.: An adaptive distributed ensemble approach to mine concept-drifting data streams. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 183–188 (2007)

    Google Scholar 

  7. Forman, G.: An extensive empirical study of feature selection metrics for text classification. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, F.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. Mach. Learn. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  10. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning, pp. 97–110 (2011)

    Google Scholar 

  11. He, D., Parker, D.S.: Topic dynamics: an alternative model of bursts in streams of topics. In: Proceedings of the 16th ACM SIGKDD Conference on Knowledge discovery and Data Mining, pp. 443–452 (2010)

    Google Scholar 

  12. Joachims, T.: SVM Light Support Vector Machine. Department of Computer Science Cornell University (1998)

    Google Scholar 

  13. Kleinberg, M.: Bursty and hierarchical structure in streams. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 91–101 (2002)

    Google Scholar 

  14. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: Proceedings of the 17th International Conference on Machine Learning, pp. 487–494 (2000)

    Google Scholar 

  15. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pp. 24–31 (2003)

    Google Scholar 

  16. Lazarescu, M.M., Venkatesh, S., Bui, H.H.: Using multiple windows to track concept drift. Intel. Data Anal. 8(1), 25–59 (2004)

    Google Scholar 

  17. Li, Y., Yang, M., Zhang, Z.: Scientific articles recommendation. In: Proceedings of the ACM International Conference on Information and Knowledge Management CIKM 2013, pp. 1147–1156 (2013)

    Google Scholar 

  18. Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive and unlabeled examples. In: Proceedings of the ICDM 2003, pp. 179–188 (2003)

    Google Scholar 

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations Workshop (2013)

    Google Scholar 

  20. Mourao, F., Rocha, L., Araujo, R., Couto, T., Goncalves, M., Meira, Jr., W.: Understanding temporal aspects in document classification. In: Proceedings of the 1st ACM International Conference on Web Search and Data Mining, pp. 159–169 (2008)

    Google Scholar 

  21. Murphy, J.: Technical Analysis of the Financial Markets, Prentice Hall, New Jersey (1999)

    Google Scholar 

  22. Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 713–720 (2006)

    Google Scholar 

  23. Salles, T., Rocha, L., Pappa, G.L.: Temporally-aware algorithms for document classification. In: Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 307–314 (2010)

    Google Scholar 

  24. Sparinnapakorn, K., Kubat, M.: Combining subclassifiers in text categorization: a dst-based solution and a case study. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 210–219 (2007)

    Google Scholar 

  25. Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pp. 579–586 (2008)

    Google Scholar 

  26. Siao, M., Guo, Y.: Domain adaptation for sequence labeling tasks with a probabilistic language adaptation model. In: Proceedings of the 30th International Conference on Machine Learning, pp. 293–301 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyo Fukumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fukumoto, F., Suzuki, Y. (2015). Smoothing Temporal Difference for Text Categorization. In: Zuccon, G., Geva, S., Joho, H., Scholer, F., Sun, A., Zhang, P. (eds) Information Retrieval Technology. AIRS 2015. Lecture Notes in Computer Science(), vol 9460. Springer, Cham. https://doi.org/10.1007/978-3-319-28940-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28940-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28939-7

  • Online ISBN: 978-3-319-28940-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics