Skip to main content

New Routes in the High-Throughput Screening of Toxic Proteins Using Immunochemical Tools

  • Chapter
  • First Online:
  • 1356 Accesses

Abstract

The chapter reviews several aspects related to the mechanism of action of toxic proteins used as biological warfare agents, together with the latest advances in immunosensor development. Emphasis will be put on the role played by the nanoparticle technology in the sensing and transduction design. The potential applications of the nanostructured immunosensors in point-of-care systems and the amenability of these devices for detection on-the-field will be critically commented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Millard C (2005) Medical defense against protein Toxin weapons. In: Lindler L, Lebeda F, Korch G (eds) Biological weapons defense. Humana Press, pp 255–283

    Google Scholar 

  2. Krutzsch W, Myjer E, Trapp R (2014) The chemical weapons convention: a commentary, OUP Oxford

    Google Scholar 

  3. U.S. Government (2011) Defense against Toxin weapons, General Books

    Google Scholar 

  4. Alouf JE, Ladant D, Popoff MR (2015) The comprehensive sourcebook of bacterial protein Toxins, Elsevier Science

    Google Scholar 

  5. Baldauf K, Royal J, Hamorsky K, Matoba N (2015) Cholera Toxin B: one subunit with many pharmaceutical applications. Toxins 7:974

    Article  Google Scholar 

  6. Bigalke H, Rummel A (2005) Medical aspects of toxin weapons. Toxicology 214:210–220

    Article  Google Scholar 

  7. Falnes PØ, Sandvig K (2000) Penetration of protein toxins into cells. Curr Opin Cell Biol 12:407–413

    Article  Google Scholar 

  8. Sandvig K, Torgersen ML, Engedal N, Skotland T, Iversen T-G (2010) Protein toxins from plants and bacteria: probes for intracellular transport and tools in medicine. FEBS Lett 584:2626–2634

    Article  Google Scholar 

  9. He X, McMahon S, Henderson TD, Griffey SM, Cheng LW (2010) Ricin Toxicokinetics and its sensitive detection in mouse sera or feces using immuno-PCR. PLoS ONE 5:e12858

    Article  ADS  Google Scholar 

  10. Gordon VM, Leppla SH (1994) Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun 62:333–340

    Google Scholar 

  11. Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061

    Article  Google Scholar 

  12. Lindberg AA, Brown JE, Strömberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785

    Google Scholar 

  13. Holmgren J, Lönnroth I, Månsson J, Svennerholm L (1975) Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc Natl Acad Sci USA 72:2520–2524

    Article  ADS  Google Scholar 

  14. Sandvig K, van Deurs B (1996) Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev 76:949–966

    Google Scholar 

  15. Jiří LS (2006) Patočka. Protein biotoxins of military significance, Acta Medica 49:3–11

    Google Scholar 

  16. Słomińska-Wojewódzka M, Sandvig K (2013) Ricin and ricin-containing immunotoxins: insights into intracellular transport and mechanism of action in vitro. Antibodies 2:236

    Article  Google Scholar 

  17. Yang H, Deng M, Ga S, Chen S, Kang L, Wang J, Xin W, Zhang T, You Z, An Y, Wang J, Cui D (2014) Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection. Nanoscale Res Lett 9:138

    Article  ADS  Google Scholar 

  18. Bagaria S, Karande A (2014) Abrin and immunoneutralization: a review. In: Gopalakrishnakone P (ed) Toxinology. Springer, Netherlands, pp 1–21

    Chapter  Google Scholar 

  19. Liu G, Li K (2015) Micro/nano optical fibers for label-free detection of abrin with high sensitivity. Sensor Actuat B Chem 215:146–151

    Article  Google Scholar 

  20. Dickers K, Bradberry S, Rice P, Griffiths G, Vale JA (2003) Abrin Poisoning. Toxicol Rev 22:137–142

    Article  Google Scholar 

  21. Subrahmanyan D, Dks JM, Raj M (2008) An unusual manifestation of Abrus precatorius poisoning: a report of two cases. Clin Toxicol 46:173–175

    Article  Google Scholar 

  22. Ler SG, Lee FK, Gopalakrishnakone P (2006) Trends in detection of warfare agents: detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J Chromatogr A 1133:1–12

    Article  Google Scholar 

  23. Brunger AT, Breidenbach MA, Jin R, Fischer A, Santos JS, Montal M (2007) Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog 3:e113

    Article  Google Scholar 

  24. Narayanan J, Sharma MK, Ponmariappan S (2015) Sarita, M. Shaik, S. Upadhyay, Electrochemical immunosensor for botulinum neurotoxin type-E using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. Biosens Bioelectron 69:249–256

    Article  Google Scholar 

  25. Grate JW, Ozanich RM Jr, Warner MG, Bruckner-Lea CJ, Marks JD (2010) Advances in assays and analytical approaches for botulinum-toxin detection. TrAC Trend Anal Chem 29:1137–1156

    Article  Google Scholar 

  26. Attrée O, Guglielmo-Viret V, Gros V, Thullier P (2007) Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. J Immunol Methods 325:78–87

    Article  Google Scholar 

  27. Blum FC, Chen C, Kroken AR, Barbieri JT (2012) Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 80:1662–1669

    Article  Google Scholar 

  28. Lindström M, Korkeala H (2006) Laboratory diagnostics of botulism. Clin Microbiol Rev 19:298–314

    Article  Google Scholar 

  29. Arnon SS, Schechter R, Inglesby TV et al (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    Article  Google Scholar 

  30. Codeco C (2001) Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect Dis 1:1

    Article  Google Scholar 

  31. Miller CE, Majewski J, Faller R, Satija S, Kuhl TL (2004) Cholera toxin assault on lipid monolayers containing ganglioside GM1. Biophysl Jl 86:3700–3708

    Article  ADS  Google Scholar 

  32. Labib M, Hedström M, Amin M, Mattiasson B (2009) A capacitive immunosensor for detection of cholera toxin. Anal Chim Acta 634:255–261

    Article  Google Scholar 

  33. Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. The Lancet 363:223–233

    Article  Google Scholar 

  34. Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94

    Google Scholar 

  35. Yu H-W, Wang Y-S (2011) Y. li, G.-L. Shen, H.-l. Wu, R.-Q. Yu, One Step Highly Sensitive Piezoelectric Agglutination Method for Cholera Toxin Detection Using GM1 Incorporated Liposome, Procedia. Environ Sci 8:248–256

    Google Scholar 

  36. Scott N, Qazi O, Wright MJ, Fairweather NF, Deonarain MP (2010) Characterisation of a panel of anti-tetanus toxin single-chain Fvs reveals cooperative binding. Mol Immunol 47:1931–1941

    Article  Google Scholar 

  37. Calvo AC, Oliván S, Manzano R, Zaragoza P, Aguilera J, Osta R (2012) Fragment C of tetanus toxin: new insights into its neuronal signaling pathway. Int J Mol Sci 13:6883

    Article  Google Scholar 

  38. Schirwitz C, Loeffler FF, Felgenhauer T, Stadler V, Breitling F, Bischoff FR (2012) Sensing immune responses with customized peptide microarrays. Biointerphases 7:47

    Article  Google Scholar 

  39. Lukić I, Marinković E, Filipović A, Krnjaja O, Kosanović D, Inić-Kanada A, Stojanović M (2015) Key protection factors against tetanus: anti-tetanus toxin antibody affinity and its ability to prevent tetanus toxin—ganglioside interaction. Toxicon 103:135–144

    Article  Google Scholar 

  40. Gooding JJ (2006) Biosensor technology for detecting biological warfare agents: recent progress and future trends. Anal Chim Acta 559:137–151

    Article  Google Scholar 

  41. Brown K (2004) Up in the Air. Science 305:1228–1229

    Article  Google Scholar 

  42. Yáñez-Sedeño P, Agüí L, Villalonga R, Pingarrón JM (2014) Biosensors in forensic analysis. A Rev Anal Chim Acta 823:1–19

    Article  Google Scholar 

  43. Wang X, Lu X, Chen J (2014) Development of biosensor technologies for analysis of environmental contaminants. Trend Environ Anal Chem 2:25–32

    Article  Google Scholar 

  44. Muzyka K (2014) Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 54:393–407

    Article  Google Scholar 

  45. Justino CIL, Freitas AC, Amaral JP, Rocha-Santos TAP, Cardoso S, Duarte AC (2013) Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors. Talanta 108:165–170

    Article  Google Scholar 

  46. Justino CIL, Rocha-Santos TA, Duarte AC, Rocha-Santos TA (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trend Anal Chem 29:1172–1183

    Article  Google Scholar 

  47. Justino CIL, Freitas AC, Pereira R, Duarte AC, Rocha Santos TAP (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trend, Anal Chem 68:2–17

    Article  Google Scholar 

  48. Gan N, Du X, Cao Y, Hu F, Li T, Jiang Q (2013) An ultrasensitive electrochemical immunosensor for HIV p24 based on Fe3O4@SiO2 nanomagnetic probes and nanogold colloid-labeled enzyme-antibody copolymer as signal tag. Materials 6:1255

    Article  ADS  Google Scholar 

  49. Baniukevic J, Kirlyte J, Ramanavicius A, Ramanaviciene A (2013) Application of oriented and random antibody immobilization methods in immunosensor design. Sensor Actuat B Chem 189:217–223

    Article  Google Scholar 

  50. Willander M, Khun K, Ibupoto Z (2014) Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements. Sensors 14:8605

    Article  Google Scholar 

  51. Warriner K, Reddy SM, Namvar A, Neethirajan S (2014) Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 40:183–199

    Article  Google Scholar 

  52. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensor Actuat B Chem 195:332–351

    Article  Google Scholar 

  53. Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14:4757–4780

    Article  Google Scholar 

  54. Omidfar K, Khorsand F, Darziani Azizi M (2013) New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron 43:336–347

    Article  Google Scholar 

  55. Pisanic TR, Ii Y, Zhang TH (2014) Wang, Quantum dots in diagnostics and detection: principles and paradigms. Analyst 139:2968–2981

    Article  ADS  Google Scholar 

  56. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657

    Article  Google Scholar 

  57. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Article  Google Scholar 

  58. Guo S, Dong S (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC Trends Anal Chem 28:96–109

    Article  Google Scholar 

  59. Zhang Y, Ge S, Wang S, Yan M, Yu J, Song X, Liu W (2012) Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels. Analyst 137:2176–2182

    Article  ADS  Google Scholar 

  60. Xia X, Xu Y, Ke R, Zhang H, Zou M, Yang W, Li Q (2013) A highly sensitive europium nanoparticle-based lateral flow immunoassay for detection of chloramphenicol residue. Anal Bioanal Chem 405:7541–7544

    Article  Google Scholar 

  61. Gopinath SCB, Tang T-H, Citartan M, Chen Y, Lakshmipriya T (2014) Current aspects in immunosensors. Biosens Bioelectron 57:292–302

    Article  Google Scholar 

  62. Lou S, Ye J-Y, Li K-Q, Wu A (2012) A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst 137:1174–1181

    Article  ADS  Google Scholar 

  63. Gopinath SCB, Awazu K, Fujimaki M, Shimizu K, Shima T (2013) Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors. PLoS ONE 8:e69121

    Article  ADS  Google Scholar 

  64. Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7:041501

    Article  Google Scholar 

  65. Gomez J, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48:612–624

    Article  ADS  Google Scholar 

  66. Frenzel H, Lajn A, Grundmann M (2013) One decade of fully transparent oxide thin-film transistors: fabrication, performance and stability, physica status solidi. (RRL)—Rapid Res Lett 7:605–615

    Google Scholar 

  67. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans Royal Soc London A: Math Phys Eng Sci 368:1333–1383

    Article  ADS  Google Scholar 

  68. Liu G, Zhang Y, Guo W (2014) Covalent functionalization of gold nanoparticles as electronic bridges and signal amplifiers towards an electrochemical immunosensor for botulinum neurotoxin type A. Biosens Bioelectron 61:547–553

    Article  Google Scholar 

  69. Loyprasert S, Hedström M, Thavarungkul P, Kanatharana P, Mattiasson B (2010) Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor. Biosens Bioelectron 25:1977–1983

    Article  Google Scholar 

  70. Yuan Y, Zhang J, Zhang H, Yang X (2012) Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1. Analyst 137:496–501

    Article  ADS  Google Scholar 

  71. Emami M, Shamsipur M, Saber R, Irajirad R (2014) An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2-iron oxide nanoparticle bioconjugates. Analyst 139:2858–2866

    Article  ADS  Google Scholar 

  72. Xu Y, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH, Otto M, Bao Y (2014) Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. J Mat Chem B 2:6198–6206

    Article  Google Scholar 

  73. Peterson RD, Chen W, Cunningham BT, Andrade JE (2015) Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosens Bioelectron 74:815–822

    Article  Google Scholar 

  74. Hurley MT, Wang Z, Mahle A, Rabin D, Liu Q, English DS, Zachariah MR, Stein D, DeShong P (2013) Synthesis, characterization, and application of antibody functionalized fluorescent silica nanoparticles. Adv Funct Mater 23:3335–3343

    Article  Google Scholar 

  75. Wang J, Han H, Jiang X, Huang L, Chen L, Li N (2012) Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticle-graphene nanosheet hybrids and silica nanospheres double-assisted signal amplification. Anal Chem 84:4893–4899

    Article  Google Scholar 

  76. Esteve-Turrillas FA, Abad-Fuentes A (2013) Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron 41:12–29

    Article  Google Scholar 

  77. Puertas S, de Gracia Villa M, Mendoza E, Jiménez-Jorquera C, de la Fuente JM, Fernández-Sánchez C, Grazú V (2013) Improving immunosensor performance through oriented immobilization of antibodies on carbon nanotube composite surfaces. Biosens Bioelectron 43:274–280

    Google Scholar 

  78. Venturelli E, Fabbro C, Chaloin O, Ménard-Moyon C, Smulski CR, Da Ros T, Kostarelos K, Prato M, Bianco A (2011) Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 7:2179–2187

    Article  Google Scholar 

  79. Lim SA, Ahmed MU (2015) A carbon nanofiber-based label free immunosensor for high sensitive detection of recombinant bovine somatotropin. Biosens Bioelectron 70:48–53

    Article  Google Scholar 

  80. McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92

    Article  Google Scholar 

  81. von Lode P (2005) Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem 38:591–606

    Article  Google Scholar 

  82. Arugula AM, Simonian A (2014) Novel trends in affinity biosensors: current challenges and perspectives. Meas Sci Technol 25:032001

    Google Scholar 

  83. Thakur MS, Ragavan KV (2013) Biosensors in food processing. J Food Sci Technol 50:625–641

    Article  Google Scholar 

  84. Gerasimov JY, Lai RY (2011) Design and characterization of an electrochemical peptide-based sensor fabricated via “click” chemistry. Chem Comm 47:8688–8690

    Article  Google Scholar 

  85. Puiu M, Idili A, Moscone D, Ricci F, Bala C (2014) A modular electrochemical peptide-based sensor for antibody detection. Chem Comm 50:8962–8965

    Article  Google Scholar 

  86. Cheng Q, Zhu S, Song J, Zhang N (2004) Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. Analyst 129:309–314

    Article  ADS  Google Scholar 

  87. Puiu M, Bala C (2014) Jaffrezic-Renault. Progress in biosensor for mycotoxins assay, Chemical Sensors 1:4–11

    Google Scholar 

  88. Suresh S, Gupta AK, Rao VK, Om K, Vijayaraghavan R (2010) Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes. Talanta 81:703–708

    Google Scholar 

  89. Patris S, De Vriese C, Prohoroff F, Calvo EB, Martínez JA, Kauffmann JM (2010) Anti-Clostridium tetani antibody determination in serum samples by amperometric immunosensing. Electroanal 22:41–48

    Google Scholar 

  90. Prodromidis MI (2010) Impedimetric immunosensors—A review. Electrochim Acta 55:4227–4233

    Article  Google Scholar 

  91. K’Owino IO, Sadik OA (2005) Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanal 17:2101–2113

    Article  Google Scholar 

  92. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal 16:19–44

    Article  Google Scholar 

  93. Puiu M, Gurban A-M, Rotariu L, Brajnicov S, Viespe C, Bala C (2015) Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats. Sensors 15:10511

    Article  Google Scholar 

  94. Moll N, Pascal E, Dinh DH, Lachaud JL, Vellutini L, Pillot JP, Rebière D, Moynet D, Pistré J, Mossalayi D, Mas Y, Bennetau B, Déjous C (2008) Multipurpose love acoustic wave immunosensor for bacteria, virus or proteins detection. IRBM 29:155–161

    Article  Google Scholar 

  95. Matatagui D, Fontecha J, Fernández M, Gràcia I, Cané C, Santos J, Horrillo M (2014) Love-Wave sensors combined with microfluidics for fast detection of biological warfare agents. Sensors 14:12658

    Article  Google Scholar 

  96. Rocha-Gaso M-I, March-Iborra C, Montoya-Baides Á, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9:5740

    Article  Google Scholar 

  97. Matatagui D, Fontecha J, Fernández MJ, Oliver MJ, Hernando-García J, Sánchez-Rojas JL, Gràcia I, Cané C, Santos JP, Horrillo MC (2013) Comparison of two types of acoustic biosensors to detect immunoreactions: love-wave sensor working in dynamic mode and QCM working in static mode. Sensor Actuat B Chem 189:123–129

    Article  Google Scholar 

  98. Taitt CR, North SH (2015) 17—Total internal reflection fluorescence (TIRF) array biosensors for biothreat agents for food safety and food defense. In: Bhunia AK, Kim MS, Taitt CR (eds) High throughput screening for food safety assessment. Woodhead Publishing, pp 399–424

    Google Scholar 

  99. Zheng J, He L (2014) Surface-Enhanced Raman spectroscopy for the chemical analysis of food. Compr Rev Food Sci Food Saf 13:317–328

    Article  Google Scholar 

  100. Shao Y, Xu S, Zheng X, Wang Y, Xu W (2010) Optical Fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors 10:3585

    Article  Google Scholar 

  101. Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, Schade R, Zbinden R, Avondet M-A, Dorner MB, Dorner BG (2009) Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 134:2028–2039

    Article  ADS  Google Scholar 

  102. Cheng LW, Stanker LH (2013) Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J Agr Food Chem 61:755–760

    Article  Google Scholar 

  103. Warner MG, Grate JW, Tyler A, Ozanich RM, Miller KD, Lou J, Marks JD, Bruckner-Lea CJ (2009) Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosens Bioelectron 25:179–184

    Article  Google Scholar 

  104. Liu B, Tong Z-Y, Hao L-Q, Liu W, Mu X-H, Liu Z-W, Huang Q-B (2013) A new electrochemiluminescence immunoassay based on magnetic microbeads as carrier of labels. Chinese J Anal Chem 41:1807–1811

    Article  Google Scholar 

  105. Rowe-Taitt CA, Hazzard JW, Hoffman KE, Cras JJ, Golden JP, Ligler FS (2000) Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens Bioelectron 15:579–589

    Article  Google Scholar 

  106. Narang U, Anderson GP, Ligler FS, Burans J (1997) Fiber optic-based biosensor for ricin. Biosens Bioelectron 12:937–945

    Article  Google Scholar 

  107. Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar HG, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron 24:1693–1699

    Google Scholar 

  108. He L, Deen B, Rodda T, Ronningen I, Blasius T, Haynes C, Diez-Gonzalez F, Labuza TP (2011) Rapid detection of ricin in milk using immunomagnetic separation combined with surface-enhanced Raman spectroscopy. J Food Sci 76:N49–N53

    Article  Google Scholar 

  109. Zhang H, Jia Z, Lv X, Zhou J, Chen L, Liu R, Ma J (2013) Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosens Bioelectron 44:89–94

    Article  Google Scholar 

  110. St A, John CP (2014) Price, Existing and Emerging Technologies for Point-of-Care Testing, The. Clin Biochem Rev 35:155–167

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the financial support of: Romanian National Authority for Scientific Research grant project PN-II-ID-PCE-2011-3-0286 and the networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature—from natural products chemistry to drug discovery”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Bala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Puiu, M., Bala, C. (2016). New Routes in the High-Throughput Screening of Toxic Proteins Using Immunochemical Tools. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_3

Download citation

Publish with us

Policies and ethics