Skip to main content

Microfluidics a Potent Route to Sample Delivery for Non-intrusive Sensors

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

Biosensors offer wide opportunities for threat agent analysis, but practical analytical systems require these sensors to be integrated with pre- and post analytical steps to enable simplified, seamless operation. Perhaps the most important of these steps relates to sample handling and presentation. Advances in microfluidics now offer a realistic means for simplified, practical handling with the facility for compressing existing analytical platforms in biosensing. Small volume handling can not only allow for miniaturisation, but flow at this scale enables a different type of flow profile and the a facility for direct liquid-liquid exchange. Basic flow principles in microflow are presented followed by a description of aqueous/organic flows and how they cab be used both for solute partitioning and in situ membrane formation. The potential value of miniaturised separation membranes is described, including for sample cleanup, handling and biosensor protection. Finally, examples of sensor integration into microfluidic structures are given as pointer towards future developments. Overall, the chapter seeks to rebalance the traditional emphasis on biosensor design by highlighting the importance of controlled sample presentation as a potential route to low maintenance biosensors with improved response characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ino K (2015) Microchemistry- and MEMS-based integrated electrochemical devices for bioassay applications. Electrochemistry 83:688–694

    Article  Google Scholar 

  2. Wu CC, Lee GB, Chen MH, Luo CH (2005) Micromachined oxygen gas sensors for microscopic energy consumption measurement systems. J Med Eng Technol 29:278–287

    Article  Google Scholar 

  3. Sawada E, Kazawa H, Yoshida Y, Iwasaki K, Mitsubayashi K (2006) A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens Bioelectron 22:558–562

    Article  Google Scholar 

  4. Zhou RJ (2005) Greenberg, Microsensors and microbiosensors for retinal implants. Front Biosci 10:166–179

    Article  Google Scholar 

  5. Rios A, Zougagh M (2015) Modern qualitative analysis by miniaturized and microfluidic systems. Trac-Trend Anal Chem 69:105–113

    Article  Google Scholar 

  6. Kaprou G, Papadakis G, Kokkoris G, Papadopoulos V, Kefala I, Papageorgiou D, Gizeli E, Tserepi A (2015) Miniaturized devices towards an integrated Lab-on-a-chip platform for DNA diagnostics. In: Van Den Driesche S (ed) Bio-Mems and medical microdevices

    Google Scholar 

  7. Braff WA, Bazant MZ, Buie CR (2015) Inertial effects on the generation of co-laminar flows. J Fluid Mech 767:85–94

    Google Scholar 

  8. Gargiuli J, Shapiro E, Gulhane H, Nair G, Drikakis D, Vadgama P (2006) Microfluidic systems for in situ formation of nylon 6,6 membranes. J Membr Sci 282:257–265

    Article  Google Scholar 

  9. Kyriacou G, Vadgama P, Wang W (2006) Characterization of a laminar flow cell for the prevention of biosensor fouling. Med Eng Phys 28:989–998

    Article  Google Scholar 

  10. Shaegh SAM, Nguyen NT, Chan SH (2011) A review on membraneless laminar flow-based fuel cells. Int J Hydrogen Energy 36:5675–5694

    Article  Google Scholar 

  11. Yoon SK, Fichtl GW, Kenis PJA (2006) Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab Chip 6:1516–1524

    Article  Google Scholar 

  12. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor. Anal Chem 71:5340–5347

    Article  Google Scholar 

  13. Zebda A, Renaud L, Cretin M, Innocent C, Ferrigno R, Tingry S (2010) Membrane less microchannel glucose biofuel cell with improved electrical performances. Sens Actuat B Chem 149:44–50

    Article  Google Scholar 

  14. Lim KG, Palmore GTR (2007) Microfluidic biofuel cells: the influence of electrode diffusion layer on performance. Biosens Bioelectron 22:941–947

    Article  Google Scholar 

  15. Münchow G, Schönfeld F, Hardt S, Graf K (2008) Protein diffusion across the interface in aqueous two-phase systems. Langmuir 24:8547–8553

    Article  Google Scholar 

  16. Meagher RJ, Light YK, Singh AK (2008) Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab Chip 8:527–532

    Article  Google Scholar 

  17. Hu R, Feng XJ, Chen P, Fu M, Chen H, Guo L, Liu BF, Rapid J (2011) highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system. Chromatogr A 1218:171–177

    Article  Google Scholar 

  18. Stichlmair J, Schmidt J, Proplesch R (1992) Electroextraction—A novel separation technique. Chem Eng Sci 47:3015–3022

    Article  Google Scholar 

  19. Münchow G, Hardt S, Kutter JP, Drese KS (2007) Electrophoretic partitioning of proteins in two-phase microflows. Lab Chip 7:98–102

    Article  Google Scholar 

  20. Hardt S, Hahn T (2012) Microfluidics with aqueous two-phase systems. Lab Chip 12:434–442

    Article  Google Scholar 

  21. Haynes CA, Carson J, Blanch HW, Prausnitz JM (1997) Electroststic potentials and protein partitioning in aqueous 2-phase systems. AIChE J 37:1401–1409

    Article  Google Scholar 

  22. Theos CW, Clark WM (1995) Electroextraction-2-phase electrophoresis. Appl Biochem Biotechnol 54:143–157

    Article  Google Scholar 

  23. Hahn T, Hardt S (2011) Size-dependent detachment of DNA molecules from liquid-liquid interfaces. Soft Matter 7:6320–6327

    Article  ADS  Google Scholar 

  24. SooHoo JR, Walker GM (2009) Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed Microdevices 11:323–329

    Article  Google Scholar 

  25. Bresme F, Oettel M (2007) Nanoparticles at fluid interfaces. J Phys: Condens Matter 19:1–33

    Google Scholar 

  26. Nam KH, Chang WJ, Hong H, Lim SM, Kim DI, Koo YM (2005) Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction. Biomed Microdevices 7:189–195

    Article  Google Scholar 

  27. Tsukamoto M, Taira S, Yamamura S, Morita Y, Nagatani N, Takamura Y, Tamiya E (2009) Cell separation by an aqueous two-phase system in a microfluidic device. Analyst 134:1994–1998

    Article  ADS  Google Scholar 

  28. Kim BJ, Liu YZ, Sung HJ (2004) Micro PIV measurement of two-fluid flow with different refractive indices. Meas Sci Technol 15:1097–1103

    Article  ADS  Google Scholar 

  29. Xia HM, Wang ZP, Koh YX, May KT (2010) A microfluidic mixer with self-excited ‘turbulent’ fluid motion for wide viscosity ratio applications. Lab Chip 10:1712–1716

    Article  Google Scholar 

  30. Reddy V, Zahn JD (2005) Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction module. J Colloid Interf Sci 286:158–165

    Article  Google Scholar 

  31. Hisamoto H, Horiuchi T, Tokeshi M, Hibara A, Kitamori T (2001) On-chip integration of neutral ionophore-based ion pair extraction reaction. Anal Chem 73:1382–1386

    Article  Google Scholar 

  32. Hisamoto H, Shimizu Y, Uchiyama K, Tokeshi M, Kikutani Y, Hibara A, Kitamori T (2003) Chemicofunctional membrane for integrated chemical processes on a microchip. Anal Chem 75:350–354

    Article  Google Scholar 

  33. Ciceri D, Perera JM, Stevens GW (2014) The use of microfluidic devices in solvent extraction. J Chem Technol Biotechnol 89:771–786

    Article  Google Scholar 

  34. Goyal S, Desai AV, Lewis RW, Ranganathan DR, Li H, Zeng D, Reichert DE, Kenis PJA (2014) Thiolene and SIFEL-based microfluidic platforms for liquid-liquid extraction. Sens Actuat B-Chem 190:634–644

    Article  Google Scholar 

  35. Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571

    Article  Google Scholar 

  36. Miyaguchi H, Tokeshi M, Kikutani Y, Hibara A, Inoue H, Kitamori T (2006) Microchip-based liquid-liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine. J Chromatogr A 1129:105–110

    Article  Google Scholar 

  37. Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride. Anal Chem 72:1711–1714

    Article  Google Scholar 

  38. Tetala KKR, Swarts JW, Chen B, Janssen AEM, van Beek TA (2009) A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip 9:2085–2092

    Article  Google Scholar 

  39. Smirnova A, Shimura K, Hibara A, Proskurnin MA, Kitamori T (2007) Application of a micro multiphase laminar flow on a microchip for extraction and determination of derivatized carbamate pesticides. Anal Sci 23:103–107

    Article  Google Scholar 

  40. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    Article  ADS  Google Scholar 

  41. Kuban P, Berg J, Dasgupta PK (2003) Vertically stratified flows in microchannels. Computational simulations and applications to solvent extraction and ion exchange. Anal Chem 75:3549–3556

    Article  Google Scholar 

  42. Hibara A, Iwayama S, Matsuoka S, Ueno M, Kikutani Y, Tokeshi M, Kitamori T (2005) Surface modification method of microchannels for gas-liquid two-phase flow in microchips. Anal Chem 77:943–947

    Article  Google Scholar 

  43. Xiao H, Liang D, Liu GC, Guo M, Xing WL, Cheng J (2006) Initial study of two-phase laminar flow extraction chip for sample preparation for gas chromatography. Lab Chip 6:1067–1072

    Article  Google Scholar 

  44. Assmann N, Ładosz A, Rudolf von Rohr P (2013) Continuous Micro Liquid-Liquid Extraction. Chem Eng Technol 36:921–936

    Article  Google Scholar 

  45. Chang H, Khan R, Rong Z, Sapelkin A, Vadgama P (2010) Study of albumin and fibrinogen membranes formed by interfacial crosslinking using microfluidic flow. Biofabrication 2(Art. No: 035002)

    Google Scholar 

  46. Orhan JB, Knaack R, Parashar VK, Gijs MAM (2008) In situ fabrication of a poly-acrylamide membrane in a microfluidic channel. Microelectron Eng 85:1083–1085

    Article  Google Scholar 

  47. Braschler T, Johann R, Heule M, Metref L, Renaud P (2005) Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab Chip 5:553–559

    Article  Google Scholar 

  48. Luo X, Berlin DL, Betz J, Payne GF, Bentley WE, Rubloff GW (2010) In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. Lab Chip 10:59–65

    Article  Google Scholar 

  49. Zhao B, Viernes NOL, Moore JS, Beebe DJ (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284–5285

    Article  Google Scholar 

  50. Uozumi Y, Yamada YMA, Beppu T, Fukuyama N, Ueno M, Kitamori T (2006) Instantaneous carbon-carbon bond formation using a microchannel reactor with a catalytic membrane. J Am Chem Soc 128:15994–15995

    Article  Google Scholar 

  51. Kenis PJA, Ismagilov RF, Takayama S, Whitesides GM, Li SL, White HS (2000) Fabrication inside microchannels using fluid flow. Acc Chem Res 33:841–847

    Article  Google Scholar 

  52. Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85

    Article  Google Scholar 

  53. Perozziello G, Candeloro P, Gentile F, Coluccio ML, Tallerico M, De Grazia A, Nicastri A, Perri AM, Parrotta E, Pardeo F, Catalano R, Cuda G, Di Fabrizio E (2015) A microfluidic dialysis device for complex biological mixture SERS analysis. Microelectron Eng 144:37–41

    Article  Google Scholar 

  54. Liu C, Mauk M, Gross R, Bushman FD, Edelstein PH, Collman RG, Bau HH (2013) Membrane-based sedimentation-assisted plasma separator for point-of-care applications. Anal Chem 85:10463–10470

    Article  Google Scholar 

  55. Mross S, Pierrat S, Zimmermann T, Kraft M (2015) Microfluidic enzymatic biosensing systems: a review. Biosens Bioelectron 70:376–391

    Article  Google Scholar 

  56. Hsieh K, Ferguson BS, Eisenstein M, Plaxco KW, Soh HT (2015) Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc Chem Res 48:911–920

    Article  Google Scholar 

  57. Tseng H-Y, Adamik V, Parsons J, Lan S-S, Malfesi S, Lum J, Shannon L, Gray B (2014) Development of an electrochemical biosensor array for quantitative polymerase chain reaction utilizing three-metal printed circuit board technology. Sens Actuat B-Chem 204:459–466

    Article  Google Scholar 

  58. Tan HY, Loke WK, Nam-Trung N, Tan SN, Tay NB, Wang W, Ng SH (2014) Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed Microdevices 16:269–275

    Article  Google Scholar 

  59. Fu C, Wang Y, Chen G, Yang L, Xu S, Xu W (2015) Aptamer-based surface-enhanced raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87:9555–9558

    Article  Google Scholar 

  60. Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566

    Article  Google Scholar 

  61. Ligler FS (2009) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81:519–526

    Article  Google Scholar 

  62. Wasalathanthri DP, Mani V, Tang CK, Rusling JF (2011) Microfluidic electrochemical array for detection of reactive metabolites formed by cytochrome P450 enzymes. Anal Chem 83:9499–9506

    Article  Google Scholar 

  63. Chen J, Zu Y, Rajagopalan KK, Wang S (2015) Manufacturing a nanowire-based sensing system via flow-guided assembly in a microchannel array template. Nanotechnology 26

    Google Scholar 

  64. Li L-M, Wang X-Y, Hu L-S, Chen R-S, Huang Y, Chen S-J, Huang W-H, Huo K-F, Chu PK (2012) Vascular lumen simulation and highly-sensitive nitric oxide detection using three-dimensional gelatin chip coupled to TiC/C nanowire arrays microelectrode. Lab Chip 12:4249–4256

    Article  Google Scholar 

  65. Quinton D, Girard A, Kim LTT, Raimbault V, Griscom L, Razan F, Griveau S, Bedioui F (2011) On-chip multi-electrochemical sensor array platform for simultaneous screening of nitric oxide and peroxynitrite. Lab Chip 11:1342–1350

    Article  Google Scholar 

  66. Wei D, Bailey MJA, Andrew P, Ryhaenen T (2009) Electrochemical biosensors at the nanoscale. Lab Chip 9:2123–2131

    Article  Google Scholar 

  67. Liao W-Y, Weng C-H, Lee G-B, Chou T-C (2006) Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis. Lab Chip 6:1362–1368

    Article  Google Scholar 

  68. Johnson RD, Gaualas VG, Daunert S, Bachas LG (2008) Microfluidic ion-sensing devices. Anal Chim Acta 613:20–30

    Article  Google Scholar 

  69. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488–2503

    Article  Google Scholar 

Download references

Acknowledgments

Generous support from the EPSRC, BBSRC and UKIER is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Vadgama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kyriacou, G., Chang, H., Gargiuli, J., Agarwal, A., Vadgama, P. (2016). Microfluidics a Potent Route to Sample Delivery for Non-intrusive Sensors. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_2

Download citation

Publish with us

Policies and ethics