Skip to main content

Biosensors for Detection of Anticholinesterase Agents

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

Cholinesterase biosensors based on various transducers and enzyme carriers have been considered in terms of inhibitor determination. The mechanism of inhibition and influence of immobilization on biosensor performance are briefly considered. The assembly of biosensors for inhibitor detection and measurement conditions are summarized for the period from 2011 to 2015 with particular emphasis to the influence of the sample matrix and immobilization protocol on the sensitivity of inhibitors detection. Finally, the prospects of cholinesterase biosensors are considered, especially those related to miniaturization and operation in extreme environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miao Y, He N, Zhu J-J (2010) History and new developments of assays for cholinesterase activity and inhibition. Chem Rev 110:5216–5234

    Article  Google Scholar 

  2. Çokuğraş AN (2003) Butyrylcholinesterase: structure and physiological importance. Turk J Biochem 28:54–61

    Google Scholar 

  3. Taylor JL, Mayer RT, Himel CM (1994) Conformers of acetylcholinesterase: a mechanism of allosteric control. Mol Pharmacol 45:74–83

    Google Scholar 

  4. Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193–214

    Article  Google Scholar 

  5. O’Marques PDB, Nunes GS, dos Santos TCR, Andreescu S, Marty JL (2004) Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: application in amperometric biosensors for methamidophos pesticide detection. Biosens Bioelectron 20:825–832

    Article  Google Scholar 

  6. Villatte F, Marcel V, Estrada-Mondaca S, Fournier D (1998) Engineering sensitive acetyl-cholinesterase for detection of organophosphate and carbamate insecticides. Biosens Bioelectron 13:157–164

    Article  Google Scholar 

  7. Gabrovska K, Marinov I, Godjevargova T, Portaccio M, Lepore M, Grano V, Diano N, Mita DG (2008) The influence of the support nature on the kinetics parameters, inhibition constants and reactivation of immobilized acetylcholinesterase. Int J Biol Macromol 43:339–345

    Article  Google Scholar 

  8. Gulla KC, Gouda MD, Thakur MS, Karanth NG (2002) Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochim Biophys Acta 1597:133–139

    Article  Google Scholar 

  9. Frasco MF, Colletier J-P, Weik M, Carvalho F, Guilhermino L, Stojan J, Fournier D (2007) Mechanisms of cholinesterase inhibition by inorganic mercury. FEBS J 274:1849–1861

    Article  Google Scholar 

  10. Tsai H-C, Doong R (2005) Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosens Bioelectron 20:1796–1804

    Article  Google Scholar 

  11. Du D, Chen S, Cai J, Song D (2007) Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles–chitosan sol-gel composite. J Electroanal Chem 611:60–66

    Article  Google Scholar 

  12. Vandeput M, Parsajoo C, Vanheuverzwijn J, Patris S, Yardim Y, le Jeune A, Sarakbi A, Mertens D, Kauffmann J-M (2015) Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis. J Pharm Biomed Anal 102:267–275

    Article  Google Scholar 

  13. Andreescu S, Noguer T, Magearu V, Marty J-L (2002) Screen-printed electrode based on ache for the detection of pesticides in presence of organic solvents. Talanta 57:169–176

    Article  Google Scholar 

  14. Evtugyn GA, Budnikov HC, Nikolskaya EB (1999) Biosensors for the determination of environmental inhibitors of enzymes. Russ Chem Rev 68:1041–1064

    Article  ADS  Google Scholar 

  15. Gogol EV, Evtugyn GA, Marty J-L, Budnikov HC, Winter VG (2000) Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors. Talanta 53:379–389

    Article  Google Scholar 

  16. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  17. Alfthan K, Kenttämaa H, Zukale T (1989) Characterization and semiquantitative estimation of organophosphorus compounds based on inhibition of cholinesterases. Anal Chim Acta 217:43–51

    Article  Google Scholar 

  18. Herzsprung P, Weil L, Niessner R (1992) Measurement of bimolecular rate constants ki of the cholinesterase inactivation reaction by 55 insecticides and of the influence of various pyridiniumoximes on ki. Int J Environ Anal Chem 47:181–200

    Article  Google Scholar 

  19. Evtugyn G (2014) Biosensors: Essentials (Lectures Notes in Analytical Chemistry). Springer Verlag, 274 pp

    Google Scholar 

  20. Thomas D, Bourdillon C, Broun G, Kernevez JP (1974) Kinetic behavior of enzymes in artificial membranes. Inhibition and reversibility effects. Biochemistry 13:2995–3000

    Article  Google Scholar 

  21. Ramachandran KB, Rathore AS, Gupta SK (1995) Modelling the effects of electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzymes. Chem Eng J Biochem Eng J 57:B15–B21

    Article  Google Scholar 

  22. Leskovac V (2004) Comprehensive enzyme kinetics. Kluwer Academic Publishers, Berlin 438 p

    Google Scholar 

  23. Baumann EK, Goodson LH, Guilbault GG, Kramer DN (1965) Preparation of immobilized cholinesterase fur use in analytical chemistry. Anal Chem 37:1378–1381

    Article  Google Scholar 

  24. Bonnet C, Andreescu S, Marty JL (2003) Adsorption: and easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Anal Chim Acta 481:209–211

    Article  Google Scholar 

  25. Sotiropoulou S, Chaniotakis NA (2005) Lowering the detection limit of the acethylcholinesterase biosensor using a nanoporous carbon matrix. Anal Chim Acta 530:199–204

    Article  Google Scholar 

  26. Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/ amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Article  Google Scholar 

  27. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58

    Article  Google Scholar 

  28. Anitha K, Venkata Mohan S, Jayarama Reddy S (2004) Development of acetylcholinesterase silica sol-gel immobilized biosensor-an application towards oxydemeton methyl detection. Biosens Bioelectron 20:848–856

    Article  Google Scholar 

  29. Du D, Chen S, Cai J, Zhang A (2008) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor on colloidal gold nanoparticles modified sol-gel interface. Talanta 74:766–772

    Article  Google Scholar 

  30. Du D, Huang X, Cai J, Zhang A, Ding J, Chen S (2007) An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan composite. Anal Bioanal Chem 387:1059–1065

    Article  Google Scholar 

  31. Warner J, Andreescu S (2016) An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides. Talanta 146:279–284

    Article  Google Scholar 

  32. Suprun E, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2005) Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal Bioanal Chem 383:597–604

    Article  Google Scholar 

  33. Sharma SP, Tomar LNS, Acharya J, Chaturvedi A, Suryanarayan MVS, Jain R (2012) Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using single-walled carbon nanotube-modified ferrule graphite electrode. Sens Actuators B 166–167:616–623

    Article  Google Scholar 

  34. Arduini F, Palleschi G (2012) Disposable electrochemical biosensor based on cholinesterase inhibition with improved shelf-life and working stability for nerve agent detection. In: Portable chemical sensors (NATO series for peace and security series A: chemistry and biology, Nikolelis D (ed)) Springer, pp 261–278

    Google Scholar 

  35. Curulli A, Dragulescu S, Cremisini C, Palleschi G (2001) Bienzyme amperometric probes for choline and choline esters assembled with nonconducting electrosynthesized polymers. Electroanalysis 13:236–242

    Article  Google Scholar 

  36. Dutta RR, Puzari P (2014) Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosens Bioelectron 52:166–172

    Article  Google Scholar 

  37. Turan J, Kesik M, Soylemez S, Goker S, Kolb M, Bahadir M, Toppar L (2014) Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs. J Electroanal Chem 735:43–50

    Article  Google Scholar 

  38. Evtugyn GA, Shamagsumova RV, Padnya PL, Stoikov II, Antipin IS (2014) Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta 127:9–17

    Article  Google Scholar 

  39. Marinov I, Gabrovska K, Velichkova J, Godjevargova T (2009) Immobilization of acetylcholinesterase on nanostructure polyacrylonitrile membranes. Int J Biol Macromol 44:338–345

    Article  Google Scholar 

  40. Pedrosa VA, Caetano J, Machado SAS, Freire RS, Bertotti M (2007) Acetylcholinesterase immobilization on 3-mercaptopropionic acid self assembled monolayer for determination of pesticides. Electroanalysis 19:1415–1419

    Article  Google Scholar 

  41. Ivanov Y, Marinov I, Gabrovska K, Dimcheva N, Godjevargova T (2010) Amperometric biosensor based on a site-specific immobilization of acetylcholinesterase via affinity bonds on a nanostructured polymer membrane with integrated multiwall carbon nanotubes. J Mol Catal B 63:141–148

    Article  Google Scholar 

  42. Bucur B, Danet AF, Marty J-L (2005) Cholinesterase immobilisation on the surface of screen-printed electrodes based on concanavalin a affinity. Anal Chim Acta 530:1–6

    Article  Google Scholar 

  43. Istamboulie G, Andreescu S, Marty J-L, Noguer T (2007) Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosens Bioelectron 23:506–512

    Article  Google Scholar 

  44. Pohanka M (2015) Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. Chem Pap 69:1044–1049

    Google Scholar 

  45. Pohanka M (2015) Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors 15:13752–13762

    Article  Google Scholar 

  46. Pohanka M (2012) Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal Lett 45:367–374

    Article  Google Scholar 

  47. Pohanka M, Drtinova L (2013) Spectrophotometric methods based on 2,6-dichloro-indophenol acetate and indoxylacetate for butyrylcholinesterase activity assay in plasma. Talanta 106:281–285

    Article  Google Scholar 

  48. Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064

    Article  Google Scholar 

  49. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmac 7:88–95

    Article  Google Scholar 

  50. Sabelle S, Renard P-Y, Pecorella K, de Suzzoni-Dézard S, Créminon C, Grassi J, Mioskowski C (2002) Design and synthesis of chemiluminescent probes for the detection of cholinesterase activity. J Am Chem Soc 124:4874–4880

    Article  Google Scholar 

  51. Rajan CS, Gupta BD (2007) Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sens Actuators B 123:661–666

    Article  Google Scholar 

  52. Liron Z, Zifman A, Heleg-Shabtai V (2011) Surface-enhanced Raman scattering detection of cholinesterase inhibitors. Anal Chim Acta 703:234–238

    Article  Google Scholar 

  53. Guilbault GG, Kramer DN, Goldberg P (1963) The application of modified Nernstian equations to the electrochemical determination of enzyme kinetics. J Phys Chem 67:1747–1749

    Article  Google Scholar 

  54. Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J (2015) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 65:23–30

    Article  Google Scholar 

  55. Wu S, Lan X, Zhao W, Li Y, Zhang L, Wang H, Han M, Tao S (2011) Controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection. Biosens Bioelectron 27:82–87

    Article  Google Scholar 

  56. Song Y, Zhang M, Wang L, Wan L, Xiao X, Ye S, Wang J (2011) A novel biosensor based on acetylecholinesterase/prussian blue–chitosan modified electrode for detection of carbaryl pesticides. Electrochim Acta 56:7267–7271

    Article  Google Scholar 

  57. Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G (2011) Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co phtalocyanine for organophosphorus pesticides detection. Talanta 85:216–221

    Article  Google Scholar 

  58. Zamfir L-G, Rotariu L, Bala C (2013) Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene–tetracyanoquinodimethane/ionic liquid conductive gels. Biosens Bioelectrons 46:61–67

    Article  Google Scholar 

  59. Rotariu R, Zamfir L-G, Bala C (2012) A rational design of the multiwalled carbon nanotube–7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Anal Chim Acta 748:81–88

    Article  Google Scholar 

  60. Zhang Y, Liu H, Yang Z, Ji S, Wang J, Pang P, Feng L, Wang H, Wu Z, Yang W (2015) An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Anal Methods 7:6213–6219

    Article  Google Scholar 

  61. Huang X, Du D, Gong X, Cai J, Tu H, Xu X, Zhang A (2008) Composite assembly of silver nanoparticles with avidin and biotinylated AChE on gold for the pesticidal electrochemical sensing. Electroanalysis 20:402–409

    Google Scholar 

  62. Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA (2015) Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta 144:559–568

    Article  Google Scholar 

  63. Crochet KL, Montalvo JG (1973) Enzyme electrode system for assay of serum cholinesterase. Anal Chim Acta 66:259–269

    Article  Google Scholar 

  64. Ivanov AN, Evtugyn GA, Lukachova LV, Karyakina EE, Budnikov HC, Kiseleva SG, Orlov AV, Karpacheva GP, Karyakin AA (2003) New polyaniline-based potentiometric biosensor for pesticides detection. IEEE J 3:333–340

    Google Scholar 

  65. Snejdarkova M, Svobodova L, Evtugyn G, Budnikov H, Karyakin A, Nikolelis DP, Hianik T (2004) Acetylcholinesterase sensors based on gold electrodes modified with dendrimer and polyaniline: a comparative research. Anal Chim Acta 514:79–88

    Article  Google Scholar 

  66. Cuartero M, Ortuño JÁ, García MS, García-Cánovas F (2012) Assay of acetylcholinesterase activity by potentiometric monitoring of acetylcholine. Anal Biochem 421:208–212

    Article  Google Scholar 

  67. Cuartero M, García MS, García-Cánovas F, Ortuño JÁ (2012) New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine. Talanta 110:8–14

    Article  Google Scholar 

  68. Khaled E, Hassan HNA, Mohamed GG, Ragab FA, Seleim AEA (2010) Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta 83:357–363

    Article  Google Scholar 

  69. Hai A, Ben-Haim D, Korbakov N, Cohen A, Shappir J, Oren R, Spira ME, Yitzchaik S (2006) Acetylcholinesterase–ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors. Biosens Bioelectron 22:605–612

    Article  Google Scholar 

  70. Soldatkin AP, Arkhypova VN, Dzyadevych SV, El’skaya AV, Gravoueille J-M, Jaffrezic-Renault N, Martelet C (2005) Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs. Talanta 65:28–33

    Article  Google Scholar 

  71. Tekaya N, Saiapina O, Ouada HB, Lagarde F, Ouada HB, Jaffrezic-Renault N (2013) Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis. Environ Pollut 178:182–188

    Article  Google Scholar 

  72. Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon J-M, Georgiou CA, Martelet C, Jaffrezic-Renault N (2005) Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens Actuators B 105:81–87

    Google Scholar 

  73. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Immobilization of acetylcholinesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron 25:832–838

    Article  Google Scholar 

  74. Dontsova EA, Zeifman YS, Budashov IA, Eremenko AV, Kalnov SV, Kurochkin IN (2011) Screen-printed carbon electrode for choline based on MnO2 nanoparticles and choline oxidase/polyelectrolyte layers. Sens Actuators B 159:261–270

    Article  Google Scholar 

  75. Ciucu AA, Negulescu C, Baldwin RP (2003) Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system. Biosens Bioelectron 18:303–310

    Article  Google Scholar 

  76. Espinosa M, Atanasov P, Wilkins E (1999) Development of a disposable organophosphate biosensor. Electroanalysis 11:1055–1062

    Article  Google Scholar 

  77. Ghindilis AL, Morzunova TG, Barmin AV, Kurochkin IN (1996) Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis. Biosens Bioelectron 11:873–880

    Article  Google Scholar 

  78. Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18:165–174

    Article  Google Scholar 

  79. Zheng Z, Li X, Dai Z, Liu S, Tang Z (2011) Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. J Mater Chem 21:16955–16962

    Article  Google Scholar 

  80. Kumar P, Kim K-H, Deep A (2015) Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens Bioelectron 70:469–481

    Article  Google Scholar 

  81. Pohanka M, Adam V, Kizek R (2013) An acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents. Sensors 13:11498–11506

    Article  Google Scholar 

  82. Arduini F, Neagu D, Dall’Oglio S, Moscone D, Palleschi G (2011) Towards a portable prototype based on electrochemical cholinesterase biosensor to be assembled to soldier overall for nerve agent detection. Electroanalysis 24:581–590

    Google Scholar 

  83. Hoskovcová M, Dubina P, Halámek E, Kobliha Z (2011) Identification of pairs of organophosphorus warfare agents through cholinesterase reaction. Anal Lett 44:2521–2529

    Article  Google Scholar 

  84. Pohanka M, Vlcek V (2014) Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs. Interdisc Toxicol 7:215–218

    Google Scholar 

  85. Tan HY, Loke WK, Nguyen N-T, Tan SN, Tay NB, Wang W, Ng SH (2014) Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed Microdevices 16:269–275

    Article  Google Scholar 

  86. Arduini F, Guidone S, Amine A, Palleschi G, Moscone D (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens Actuators B 179:201–208

    Article  Google Scholar 

  87. Ganesana M, Istarnboulie G, Marty J-L, Noguer T, Andreescu S (2011) Site-specific immobilization of a (His) 6 -tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens Bioelectron 30:43–48

    Article  Google Scholar 

  88. Chen D, Wang J, Xu Y, Zhang L (2012) A thin film electro-acoustic enzyme biosensor allowing the detection of trace organophosphorus pesticides. Anal Biochem 429:42–44

    Article  Google Scholar 

  89. Yu G, Wu W, Zhao Q, WeiX L (2015) Efficient immobilization of acetylcholinesterase onto aminofunctionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens Bioelectron 68:288–294

    Article  Google Scholar 

  90. Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651

    Article  Google Scholar 

  91. Chen D, Wang J, Xu Y, Li D, Zhang L, Li Z (2013) Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosens Bioelectron 41:163–167

    Article  Google Scholar 

  92. Nayak P, Anbarasan B, Ramaprabhu S (2013) Fabrication of organophosphorus biosensor using ZnO nanoparticle-decorated carbon nanotube-graphene hybrid composite prepared by a novel green technique. J Phys Chem C 117:13202–13209

    Article  Google Scholar 

  93. Ebrahimi B, Shojaosadati SA, Daneshgar P, Norouzi P, Mousavi SM (2011) Performance evaluation of fast Fourier-transform continuous cyclic-voltammetry pesticide biosensor. Anal Chim Acta 687:168–176

    Article  Google Scholar 

  94. Raghu P, Reddy TM, Swamy BEK, Chandrashekar BN, Reddaiah K, Sreedhar M (2012) Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples: A cyclic voltammetric study. J Electroanal Chem 665:76–82

    Article  Google Scholar 

  95. Marinov I, Ivanov Y, Vassileva N, Godjevargova T (2011) Amperometric inhibition-based detection of organophosphorus pesticides in unary and binary mixtures employing flow-injection analysis. Sens Actuators B 160:1098–1105

    Article  Google Scholar 

  96. Li X, Zheng Z, Liu X, Zhao S, Liu S (2015) Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens Bioelectron 64:1–5

    Article  Google Scholar 

  97. Kesik M, Kanik FE, Turan J, Kolb M, Timur S, Bahadir M, Toppare L (2014) An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides. Sens Actuators B 205:39–49

    Article  Google Scholar 

  98. Mishra RK, Dominguez RB, Bhand S, Muñoz R, Marty J-L (2012) A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosens Bioelectron 32:56–61

    Article  Google Scholar 

  99. Crew A, Lonsdale D, Byrd N, Pittson R, Hart JP (2011) A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens Bioelectron 26:2847–2851

    Article  Google Scholar 

  100. Chauhan N, Pundir CS (2011) An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta 701:66–74

    Article  Google Scholar 

  101. Ion I, Ion AC (2012) Determination of chlorpyriphos in broccoli using a voltammetric acetylcholinesterase sensor based on carbon nanostructure-chitosan composite material. Mater Sci Eng C 32:1001–1004

    Article  Google Scholar 

  102. Zhou Q, Yang L, Wang G, Yang Y (2013) Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Biosens Bioelectron 49:25–31

    Article  Google Scholar 

  103. Santos CS, Mossanha R, Pessôa SA (2015) Biosensor for carbaryl based on gold modified with PAMAM-G4 dendrimer. J Appl Electrochem 45:325–334

    Article  Google Scholar 

  104. Hatefi-Mehrjardi A (2013) Bienzyme self-assembled monolayer on gold electrode: an amperometric biosensor for carbaryl determination. Electrochim Acta 114:394–402

    Article  Google Scholar 

  105. Song Y, Zhang M, Wang L, Wan L, Xiao X, Ye S, Wang J (2011) A novel biosensor based on acetylecholinesterase/prussian blue-chitosan modified electrode for detection of carbaryl pesticides. Electrochim Acta 56:7267–7271

    Article  Google Scholar 

  106. Liu Q, Fei A, Huan J, Mao H, Wang K (2015) Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure. J Electroanal Chem 740:8–13

    Article  Google Scholar 

  107. Gong Z, Guo Y, Sun X, Cao Y, Wang X (2014) Acetylcholinesterase biosensor for carbaryl detection based on interdigitated array microelectrodes. Bioprocess Biosyst Eng 37:1929–1934

    Article  Google Scholar 

  108. Cesarino I, Moraes FC, Lanza MRV, Machado SAS (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem 135:873–879

    Article  Google Scholar 

  109. Caetano J, Dragunski DC, Pedrosa VA, Machado SAS (2013) Quantification of methomyl levels in vabbage, tomato, and soya milk using a renewable amperometric biosensor. Int J Electrochem Sci 8:7795–7805

    Google Scholar 

  110. Kestwal RM, Bagal-Kestwal D, Chiang B-H (2015) Fenugreek hydrogeleagarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection. Anal Chim Acta 886:143–150

    Article  Google Scholar 

  111. Pohanka M (2013) Spectrophotomeric assay of aflatoxin B1 using acetylcholinesterase immobilized on standard microplates. Anal Lett 46:1306–1315

    Article  Google Scholar 

  112. Puiu M, Istrate O, Rotariu L, Bala C (2012) Kinetic approach of aflatoxin B1-acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors. Anal Biochem 421:587–594

    Article  Google Scholar 

  113. Soldatkin O, Burdak OS, Sergeyeva TA, Arkhypova VM, Dzyadevych SV, Soldatkin AP (2013) Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sens Actuators B 188:999–1003

    Google Scholar 

  114. Stepurska KV, Soldatkin OO, Arkhypova VM, Soldatkin AP, Lagarde F, Jaffrezic-Renault N, Dzyadevych SV (2015) Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta 144:1079–1084

    Article  Google Scholar 

  115. Espinoza MA, Istamboulie G, Chira A, Noguer T, Stoytcheva M, Marty J-L (2014) Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes. Anal Biochem 457:85–90

    Google Scholar 

  116. Cuartero M, García MS, García-Cánovas F, Ortuño JÁ (2013) New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and itsd etermination in pharmaceuticals and human urine. Talanta 110:8–14

    Article  Google Scholar 

  117. Turan J, Kesik M, Soylemez S, Goker S, Kolb M, Bahadir M, Toppare L (2014) Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs. J Electroanal Chem 735:43–50

    Article  Google Scholar 

  118. Asturias-Arribas L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2013) Screen-printed biosensor based on the inhibition of the acetylcholinesterase activity for the determination of codeine. Talanta 111:8–12

    Article  Google Scholar 

  119. Soldatkin OO, Pavluchenko OS, Kukla OL, Kucherenko IS, Peshkova VM, Arkhypova VM, Dzyadevych SV, Soldatkin AP, El’skaya AV (2009) Application of enzyme multibiosensor for toxicity analysis of real water samples of different origin. Biopolym Cell 25:204–209

    Google Scholar 

  120. Evtugyn GA, Rizaeva EP, Stoikova EE, Latipova VZ, Budnikov HC (1997) The application of cholinesterase potentiometric biosensor for preliminary screening of the toxicity of waste waters. Electroanalysis 9:1124–1128

    Article  Google Scholar 

  121. Czolkos I, Dock E, Tønning E, Christensen J, Winther-Nielsen M, Carlsson C, Mojzíková R, Skládal P, Wollenberger U, Nørgaard L, Ruzgas T, Emnéus J (2016) Prediction of wastewater quality using amperometric bioelectronic tongues. Biosens Bioelectron 75:375–382

    Article  Google Scholar 

  122. Stepurska KV, Soldatkin OO, Kucherenko IS, Arkhypova VM, Dzyadevych SV, Soldatkin AP (2015) Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Anal Chim Acta 854:161–168

    Article  Google Scholar 

  123. Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2013) Determination of metals based on electrochemical biosensors. Crit Rev Environ Sci Technol 43:1042–1073

    Article  Google Scholar 

  124. Volotovskky V, Kim N (2003) Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J Microbiol Biotechnol 13:373–377

    Google Scholar 

  125. Danzer T, Schwedt G (1996) Multivariate evaluation of inhibition studies on an enzyme electrodes system with pesticides and mixtures of mercury and pesticides. Anal Chim Acta 325:1–10

    Article  Google Scholar 

  126. Danzer T, Schwedt G (1996) Chemometric methods for the development of a biosensor system and the evaluation of inhibition studies with solutions and mixtures of pesticides and heavy metals. Part 1. Development of an enzyme electrodes system for pesticide and heavy metal screening using selected chemometric methods. Anal Chim Acta 318:275–286

    Article  Google Scholar 

  127. Kucherenko IS, Soldatkin OO, Arkhypova VM, Dzyadevych SV, Soldatkin AP (2012) A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition. Measur Sci Technol 23:065801

    Article  ADS  Google Scholar 

  128. Evtugyn GA, Budnikov HC, Nikolskaya EB (1996) Influence of surface-active compounds on the response and sensitivity of cholinesterase biosensors for inhibitor determination. Analyst 121:1911–1915

    Article  ADS  Google Scholar 

  129. Soldatkin AP, Gorchkov DV, Martelet C, Jaffrezic-Renault N (1997) New enzyme potentiometric sensor for hypochlorite species detection. Sens Actuators B 43:99–101

    Article  Google Scholar 

  130. Yoon Y-J, Li KHH, Low JZ, Yoon J, Ng SH (2014) Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent. Sens Actuators B 198:233–238

    Article  Google Scholar 

  131. Wang J, Satake T, Suzuki H (2015) Microfluidic device for coulometric detection of organophosphate pesticides. Anal Sci 31:591–595

    Article  Google Scholar 

  132. Hadd AG, Jacobson SC, Ramsey JM (1999) Microfluidic assays of acetylcholinesterase inhibitors. Anal Chem 71:5206–5212

    Article  Google Scholar 

  133. Liao S, Qiao Y, Han W, Xie Z, Wu Z, Shen G, Yu R (2012) Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal Chem 84:45–49

    Article  Google Scholar 

  134. Li Y, Bai H, Li C, Shi G (2011) Colorimetric assays for acetylcholinesterase activity and inhibitor screening based on the disassembly-assembly of a water-soluble polythiophene derivative. ACS Appl Mater Interfaces 3:1306–1310

    Article  Google Scholar 

  135. Del Carlo M, Pepe A, Sergi M, Mascini M, Tarentini A, Compagnone D (2010) Detection of coumaphos in honey using a screening method based on an electrochemical acetylcholinesterase bioassay. Talanta 81:76–81

    Article  Google Scholar 

  136. Evtyugin GA, Stoikova EE, Iskanderov RR, Nikol’skaya EB, Budnikov GK (1997) Electrochemical sample preparation for the enzymatic determination of cholinesterase inhibitors. J Anal Chem 52:2–5

    Google Scholar 

  137. Ivanov A, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2003) Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides. Anal Bioanal Chem 377:624–631

    Article  Google Scholar 

  138. Nesakumar N, Sethuraman S, Krishnan UM (2015) Rayappan JBB (2015) Cyclic voltammetric acetylcholinesterase biosensor for the detection of captan in apple samples with the aid of chemometrics. Anal Bioanal Chem 407:4863–4868

    Article  Google Scholar 

  139. Bachmann TT, Schmid RD (1999) A disposable multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution. Anal Chim Acta 401:95–103

    Article  Google Scholar 

  140. Bachmann TT, Leca B, Vilatte F, Marty J-L, Fournier D, Schmid RD (2000) Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron 15:193–201

    Article  Google Scholar 

  141. Rhouati A, Istamboulie G, Cortina-Puig M, Marty J-L, Noguer T (2010) Selective spectrophotometric detection of insecticides using cholinesterases, phosphotriesterase and chemometric analysis. Enzyme Microb Technol 46:212–216

    Article  Google Scholar 

  142. Mwila K, Burton MH, Van Dyk JS, Pletschke BI (2013) The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ Monit Assess 185:2315–2327

    Article  Google Scholar 

  143. Mishra RK, Alonso GA, Istamboulie G, Bhand S, Marty J-L (2015) Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sens Actuators B 208:228–237

    Article  Google Scholar 

Download references

Acknowledgments

This work has funded by the subsidy allocated to Kazan Federal University for the project part of the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Evtugyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Evtugyn, G. (2016). Biosensors for Detection of Anticholinesterase Agents. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_17

Download citation

Publish with us

Policies and ethics