Skip to main content

Efficiency of Instrumental Analytical Approaches at the Control of Bacterial Infections in Water, Foods and Feeds

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

Bacterial agents are those that are pathogenic to humans, plants and animals either by causing infectious diseases or by producing toxins. The review provides the description of some pathogenic bacteria, which are a threat to human health and life and must be strictly controlled in the food, water and the environment. With increasing reports on bioterrorism and other bio-threats, rapid and real time detection methods for various pathogens are warranted. Nowadays is important to develop strategies for early detection and monitoring bacterial agents under any conditions that warrant their recognition, including clinical-based diagnostics and biological warfare applications. The review is devoted to the microorganism’s indication methods. A study of methods of exposure and authentication of biological agents is important design of biosensors and automatic microorganism’s indication. In this study the authors compare the characteristics of the immune biosensors based on the SPR, TIRE, quartz crystal acoustic wave, amperometry, chemiluminescence and on the ISFETs with CeOx gate surface and conclude that they have similar sensitivity. Special attention is paid to biosensors and last tendencies of their creation based on nanostructures such as deposited nanorods, quantum dots and graphene nanostructures. The achievements of the authors in this field and other researching groups all over the world are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 5th World Congress Foodborne Infections and Intoxications, 7–11 June 2004, Berlin, Germany

    Google Scholar 

  2. Abdelhamida H, Wu H-F (2013) Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B 1:3950–3961

    Google Scholar 

  3. Abelès F (1976) Surface electromagnetic waves ellipsometry. Surf Sci 56:237–251

    Article  ADS  Google Scholar 

  4. Agroterrorism—the new threat to food security, 02 May 2013. https://www.lloyds.com/news-and-insight/news-and-features/emerging-risk/emerging-risk-2013/agroterrorism-the-new-threat-to-food-security

  5. Albers WM, Vikholm-Lundin I (2011) Surface plasmon resonance on nanoscale organic films. In: Carraro S (ed) Nano-Bio-Sensing. Springer, New York. ISBN 978-1-4419-6168-6

    Google Scholar 

  6. Alocilja E, Radke S (2003) Market analysis of biosensors for food safety. Biosens Bioelectron 18:841–846

    Article  Google Scholar 

  7. Arwin H, Poksinski M, Johansen K (2004) Total internal reflection ellipsometry: principles and applications. Appl Opt 43(15):3028–3036

    Article  ADS  Google Scholar 

  8. Bachrach U, Bachrach Z (1974) Radiometric for the detection of coliform organisms in water. Appl Microbiol 28(2):169–171

    Google Scholar 

  9. Baleviciute I, Balevicius Z, Makaraviciute A, Ramanaviciene A, Ramanavicius A (2013) Study of antibody/antigen binding kinetics by total internal reflection ellipsometry. Biosens Bioelectron 39(1):170–176

    Article  Google Scholar 

  10. Banting G, Kantor C, Kollins F et al (1990) Analysis of the genome. Methods Mir, p 246

    Google Scholar 

  11. Barlen B, Mazumdar S, Lezrich O, Kämpfer P, Keusgen M (2007) Detection of Salmonella by surface plasmon resonance. Sensors 7:1427–1446

    Article  Google Scholar 

  12. Barrett DJ, Ammann AJ, Stenmark S, Wara DW (1980) Immunoglobulin G and M antibodies to pneumococcal polysaccharides detected by enzyme-linked immunosorbent assay. Infect Immun 27(2):411–417

    Google Scholar 

  13. Bernhard A, Field K (2000) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella Genes encoding 16S rRNA. Appl Env Microbiol 66(10):4571–4574

    Article  Google Scholar 

  14. Turner A, Karube I, Wilson G (eds) (1987) Biosensors: Fundamentals and Application. Oxford University Press, Oxford

    Google Scholar 

  15. Bokken G, Corbee RJ, van Knapen F, Bergwerff AA (2003) Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett 222:75

    Article  Google Scholar 

  16. Borneman J, Skroch P, O’Sullivan K, Palus J, Rumjanek N, Jansen J, Nienhuis J, Triplett E (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    Google Scholar 

  17. Buchanan R (2004) Principles of risk analysis as applied to microbial food safety concerns. US DHHS Food and Drug Administration, Center for Food Safety and Applied Nutrition, CollegePark, MD, USA

    Google Scholar 

  18. Bussey D, Tsuji K (1968) Bioluminescence for USP sterility testing of phar-maceutical suspension products. Appl Environ Microbiol 5(2):349–355

    Google Scholar 

  19. Buxton A, Davies JM (1963) Studies on immunity and pathogenesis of salmonellosis II antibody production and accumulation of bacterial polysaccharide in the tissues of chickens infected with Salmonella gallinarium. Immunology 6:530–538

    Google Scholar 

  20. Caras S, Janata J (1980) Anal Chem 52:1935–1937

    Article  Google Scholar 

  21. Carraway M, Tzipori S, Widmer G (1996) Identification of genetic heterogeneity in the Cryptosporidium parvum ribosomal repeat. Appl Environ Microbiol 62(2):712–716

    Google Scholar 

  22. Carnazza S, Foti C, Gioffrè G, Felici F, Guglielmino S (2008) Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens Bioelectron 23:1137–1144

    Article  Google Scholar 

  23. Cheng R, Furtak T (1984) Enhanced Raman scattering. Mir, p 408

    Google Scholar 

  24. Cho H, Chegal W, Cho Y, Kim Y, Kim H (2005) Enhancement of biomolecular detection sensitivity by surface plasmon resonance ellipsometry. In: Islam MS, Dutta AK (eds) Proceedings of SPIE, Nanosensing: Materials and Devices II, vol 6008, p 60081F

    Google Scholar 

  25. Coates DA (1977) Enhancement of the sensitivity of the Limulus assay for the detection of gram negative bacteria. J Appl Bacteriol 42(3):445–449

    Article  MathSciNet  Google Scholar 

  26. Fung DYC (2004) Rapid methods for the detection and enumeration of microorganisms in water. In: Cotruvo JA et al (eds) Section VI: Analysis of Zoonotic Microorganisms, Chap. 23, Waterborne Zoonoses: Identification, Causes and Control

    Google Scholar 

  27. Dimmick R, Akers A (1969) An Introduction to Experimental Aerobiology, Toronto, 120 pp

    Google Scholar 

  28. Dittrich S, Schwill P (2003) An integrated microfluidic system for reaction, high-sensitivity detection and sorting of fluorescent all and particles. Ibid 75(21):5767–5774

    Google Scholar 

  29. Dzharylgasov S (1977) Device for the microbiological analysis of air. Discoveries, inventions, industrial designs, trademarks, № 20, p 72

    Google Scholar 

  30. Ellner P.D (1975) Detection of bacteria by bioluminescence. Microbiology, Washington, p 37–38

    Google Scholar 

  31. European Commission Health & Consumer Protection Directorate General. Working Document on Microbial Contaminant Limits for Microbial Pest Control Products, September 2012

    Google Scholar 

  32. Evdokimov L, Balashov M, Dadalova A, Krayeva V (1980) Comparative Effectiveness of samplers of air bacterial flora. Laboratory Work, № 4, pp 243–246

    Google Scholar 

  33. Garipcan B, Çağlayan O, Demirel G (2011) New generation biosensors based on ellipsometry. In: Serra PA (ed) New Perspectives in Biosensors Technology and Applications. InTech, Shanghi, p 458

    Google Scholar 

  34. Gerone P, Couch R, Keefer V et al (1966) Assessment of experimental and natural viral aerosols. Bact Rev 30:576–588

    Google Scholar 

  35. Glik B, Pasternak D (2002) Molecular Biotechnology: Principles and Applications. Mir, p 589

    Google Scholar 

  36. Grishaev M, Egorova T, Amosov A (1993) Isolation of hepatitis B virus DNA using the polymerase chain reaction. Perm (Russia), p 39

    Google Scholar 

  37. Grun J, Manka C, Nikitin S et al (2007) Identification of bacteria from two-dimensional resonant—Raman spectra. Anal Chem 79(14):5489–5493

    Article  Google Scholar 

  38. Gu B, Xu C, Yang C, Liu S, Wang M (2011) Biosens Bioelectron 26:2720–2723

    Article  Google Scholar 

  39. Guo C, Wang J, Cheng J, Dai Z (2012) Biosens Bioelectron 36:69–74

    Article  Google Scholar 

  40. Gupta A, Rao K (1979) Simultaneous detection of Salmonella typhi antigen and antibody in serum by counter-immunoelectrophoresis for an early and rapid diagnosis of typhoid fever. J Immunol Methods 30:349–353

    Article  Google Scholar 

  41. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:2

    Article  Google Scholar 

  42. Hurek T, Egener T, Reinhold-Hurek B (1997) Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the b subclass. J Bacteriol 179:4172–4178

    Google Scholar 

  43. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  Google Scholar 

  44. Iwata T, Maeda S (2007) Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry. Appl Opt 46(9):1575–1582

    Article  ADS  Google Scholar 

  45. Jeffrey J, Kirk J, Atwill E, Cullor J (1998) Prevalence of selected microbial pathogens in processed poultry waste used as dairy cattle feed. Poult Sci 77:808–811

    Article  Google Scholar 

  46. Kenyon CL (1975) An automated Bakteriadetektor monitor. Am Lab 7(12):35–36–38-39

    Google Scholar 

  47. Kihlberg B-M, Sjobring U, Kasternl W, Bjorck L (1992) Protein LG: a hybrid molecule with unique immunoglobulin binding properties. J Biol Chem 267(35):25583–25588

    Google Scholar 

  48. Koubová V, Brynda E, Karasová L, Škvor J, Homola J, Dostálek J, Tobiška P, Rošický J (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens Actuators B: Chem 74(1–3):100–105

    Article  Google Scholar 

  49. Kuts P, Tutova G, Zhavnerko N et al (1979) A method of determining the viability of the microorganisms. In: Discoveries: Inventions, № 37, p 103

    Google Scholar 

  50. Lan Y, Wang S, Yinc Y, Hoffmann W, Zhengd X (2008) Using a surface plasmon resonance biosensor for rapid detection of Salmonella Typhimurium in chicken carcass. J Bionic Eng 5(3):239–246

    Google Scholar 

  51. Lee C-S, Kim S, Kim M (2009) Ion-sensitive field-effect transistor for biological sensing. Sensors 9:7111–7131

    Article  Google Scholar 

  52. Levine M, Grados O, Gilman R, Woodward W, Solis-Plaza R, Waldman W (1978) Diagnostic value of the widal test in areas endemic for typhoid fever. Am J Trop Med Hyg 27(4):795–800

    Google Scholar 

  53. Li J, Schanzle JA, Tabacco M (2004) Real time detection of bacterial contamination in dynamic aqueous environments using optical sensor. Anal Chem 76(5):1411–1418

    Article  Google Scholar 

  54. Liang W, Liu Z, Liu S, Yang J, He Y (2014) Sens Actuators, B 196:336–344

    Article  Google Scholar 

  55. Liebana S, Lermo A, Campoy S, Barbe J, Alegret S, Pividori M (2009) Electrochemical magneto-immunosensing of Salmonella based on nano and micro-sized magnetic particles. Anal Chem 81:5812

    Article  Google Scholar 

  56. Liedberg B, Nylander C, Lundstrom I (1995) Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron 10:i–ix

    Google Scholar 

  57. Liu HY et al (1997) DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J 16(17):5289–5298

    Article  Google Scholar 

  58. Lomke G, Meltzer R, Akzo N (1986) Electrooptical apparatus for microbial identification and enumeration. Pat. 4576916 USA, MKU C 12 M 1/36, C 12 Q 1/18. Applic. 11.07.84; Publ. 18.03.86

    Google Scholar 

  59. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saikali Y, Vittori O, Errachid A, Cloarec J, Martelet C, Jaffrezic-Renault N (2007) Anal Chem 79:4879

    Article  Google Scholar 

  60. Maciorowski K, Herrera P, Jones F, Pillai S, Ricke S (2007) Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim Feed Sci Technol 133(1):109–136

    Article  Google Scholar 

  61. Maciorowski K, Pillai S, Ricke S (2001) Presence of bacteriophages in animal feed as indicators of fecal contamination. J Environ Sci Health B 36:699–708

    Google Scholar 

  62. Maciorowski K (2005) Polymerase chain reaction detection of foodborne Salmonella spp. in animal feeds. Crit Rev Microbiol 31:45–53

    Google Scholar 

  63. Mihailovich V, Parinov S, Mazurova Y (1993) Polymerase chain reaction can serve as a reliable alternative method for the diagnosis of diphtheria infection. Perm (Russia) 83–84

    Google Scholar 

  64. Mihaylova S (1983) Pyrogenic impurities in drugs and methods and equipment for determination/S.N. Mikhailova//Pharmacy. NRB, vol 33, № 4, pp 3–37

    Google Scholar 

  65. Morello J, Digenio T, Baker E (1964) Evaluation of serological and cultural methods of chronic salmonellosis in mice. J. Bacteriol 88(5):1277–1282. American Society for Microbiology, Printed in USA

    Google Scholar 

  66. Nabok A, Tsargorodskaya A, Mustafa M, Székács A, Székács I, Starodub N (2009) Detection of low molecular weight toxins using optical phase detection techniques. Procedia Chem 1:1491–1494

    Article  Google Scholar 

  67. Nakamizo Y, Takahashi R (1965) Latex-agglutination test in shigellosis and salmonellosis. Am J Trop Med Hyg 14(5):783–786

    Google Scholar 

  68. Nardiello S, Pizzella T, Rum M, Galanti B (1984) Serodiagnosis of typhoid fever by enzyme-linked immunosorbent assay determination of anti-Salmonella typhi lipopolysaccharide antibodies. J Clin Microbiol 20:718–721

    Google Scholar 

  69. NATO STANAG 2873 AMedP-7, Concept of Operations of Medical Support in Chemical, Biological, Radiological, and Nuclear Environments, provides guidance for planning CBRN medical operations, 6 Dec 2007

    Google Scholar 

  70. Ogorodniichuk I, Starodub N, Lebedeva T, Shpylovyy P (2013) Optical immune biosensors for Salmonella Typhimurium detection. Adv Biosens Bioelectron (ABB) 2(3):39–46

    Google Scholar 

  71. Oh BK, Lee W, Kim YK, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol 111(1):1–8

    Google Scholar 

  72. Oh BK, Kim YK, Park KW, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens Bioelectron 19:1497–1504

    Google Scholar 

  73. Onuigbo MA (1990) Diagnosis of typhoid fever in Nigeria: misuse of the Widal test. Trans R Soc Trop Med Hyg 84(1):129–131

    Google Scholar 

  74. Orlova N, Brusnichkin A, Fokin A et al (2005) Determination of polysaccharides using photoacoustic spectroscopy and thermal lens spectrometer. In: Analysis and Control, vol 9, № 3. pp 257–263

    Google Scholar 

  75. Pribil P, Fensela C (2005) Characterization of enterobacteria using MAL-DI-TOF-mass spectrometry. Ibid 77(18):6092–62095

    Google Scholar 

  76. Qi C, Gao G, Jin G (2011) Label-free biosensors for health applications. In: Serra PA (ed) Biosensors for Health, Environment and Biosecurity. InTech, Rijeka, p 550

    Google Scholar 

  77. Qian ZS, Yue-Shan X, Chai LJ, Ma JJ, Chen JR, Feng H (2014) Biosens Bioelectron 60:64–70

    Google Scholar 

  78. Shah J, Wilkinsa E (2003) Electrochemical biosensors for detection of biological warfare agents. Electroanalysis 15(3):157–167

    Article  Google Scholar 

  79. Son JR, Kim G, Kothapalli A, Morgan MT, Ess D (2007) Detection of Salmonella enteritidis using a miniature optical surface Plasmon resonance biosensor. J Phys 61:1086–1090

    Google Scholar 

  80. Starodub N, Dzantiev B, Starodub V, Zherdev A (2000) Immunosensor for the determination of the herbicide simazine based on an ion-selective field-effect transistor. Anal Chim Acta 424:37–43

    Article  Google Scholar 

  81. Starodub N, Ogorodnijchuk J (2012) Immune Biosensor Based on the ISFETs for express determination of Salmonella typhimurium. Electroanalysis 24:1–7

    Article  Google Scholar 

  82. Starodub N, Shavanova K, Karpiuk A (2014) Complex of the new generation of the instrumental analytical approaches to prevent dangerous bioterrorism. In: Conference Paper in Proceedings of SPIE—the International Society for Optical Engineering, vol 9253, October 2014

    Google Scholar 

  83. Starodub NF, Ogorodnijchuk JA, Romanov VO (2011) Optical immune biosensor based on SPR for the detection of Salmonella typhimurium. In: Abstract Book: the SENSOR + TEST 2011 Conference, Nurenberg, p 7

    Google Scholar 

  84. Starodub N, Ogorodnijchuk J Efficiency of immune biosensor based on total internal reflection ellipsometry at the determination of Salmonella. In: Proceedings of the 14th International Meeting on Chemical Sensors in Nurnberg/Germany, 20–23 May 2012, pp 170–179

    Google Scholar 

  85. Starodub NF, Nabok AV, Starodub VM et al (2001) Immobilization of biocomponens for immune optical sensor. Ukr Biochem J 73(4):55–64

    Google Scholar 

  86. Starodub NF, Pirogova LV, Demchenko A, Nabok AV (2004) Antibody immobilisation on the metal and silicon surfaces. The use of self-assembled layers and specific receptors. Bioelectrochem, vol 66, № 1 (2):111–116

    Google Scholar 

  87. Starodub NF, Rachkov OE, Petik AV, Turkovskaja GV, Shul’ga NI, Balkov DI (1986) Isolation of individual mRNA and immunochemical testing of products of translation. In: Proceedings—Methods of Molecular Biology II–K.: Naukova dumka, pp 90–99

    Google Scholar 

  88. Starodub NF, Starodub VM (2000) Ukr Biochem Zhurn 4–5:147–163

    Google Scholar 

  89. Stokert J, Welaj P, Percells J (1979) Detection of microbial growth using stainless steel—electrodes. In: Abstracts, 79th Annual Meeting of the American Society for Microbiology, Los Angeles, CA, Washington, p 301

    Google Scholar 

  90. Svensson HG, Hoogenboom HR, Sjobring U (1998) Protein LA, a novel hybrid protein with unique single-chain Fv antibody-and Fab-binding properties. Eur J Biochem 258:8902896 (1998)

    Google Scholar 

  91. Valadez A, Lana C, Tu S-I, Morgan M, Bhunia A (2009) Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors 9:5810–5824

    Article  Google Scholar 

  92. Van der Schoot BH, Bergveld P (1987/88) Biosensors 3:161–186

    Google Scholar 

  93. Van T, Moutafis G, Istivan T, Tran L, Coloe P (2007) Detection of Salmonella spp. in retail raw food samples from vietnam and characterization of their antibiotic resistance. Appl Environ Microbiol 73(21):6885–6890

    Article  Google Scholar 

  94. VanBaar B, Hulst A, De Jong A, Wills E (2004) Characterization of botulinum toxins type CDE and F by matrix assisted laser desorption ionization and electrospray mass spectrometry. J Chromatogr A 1036(1):97–114

    Article  Google Scholar 

  95. Verkin B, Medvedev E, Blohin V (1976) Apparatus method for detection of microorganisms in samples of dry soil. In: Questions of calculated mat. equipment. К., pp 130–135

    Google Scholar 

  96. Viter R, Khranovskyy V, Starodub N, Ogorodniichuk Y, Gevelyuk S, Gertnere Z, Poletaev N, Yakimova R, Erts D, Smyntyna V, Ubelis A (2014) Application of room temperature photoluminescence from ZnO nanorods for Salmonella detection. IEEE Sens J 14(6):2028–2034

    Article  Google Scholar 

  97. Vladimirskiy M, Shipina L, Kalinin M (1993) Rapid and highly sensitive detection of Mycobacterium tuberculosis in diagnostic materials by polymerase chain reaction. Perm (Russia), 33

    Google Scholar 

  98. Walt D, Franz D (2000) Peer Reviewed: Biological Warfare Detection 72(23):738A–746. doi:10.1021/ac003002a

    Google Scholar 

  99. Wang Y, Alocilja E (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9:16

    Article  Google Scholar 

  100. Wang Z, Dunlop K, Long S, Li L (2002) Mass spectrometric methods for generation of protein mass database used for bacterial identification. Anal Chem 74(13):3174–3182

    Article  Google Scholar 

  101. Waterborne Zoonoses: Identification, Causes and Control. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) IWA Publishing, London 1996

    Google Scholar 

  102. Weary M (1986) Pyrogen testing with the Limulus amebocyte lysate test. Parm Int 7(4):92–102

    Google Scholar 

  103. Weidner K, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W (1996) Interaction between gab and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384(6605):173–176

    Article  ADS  Google Scholar 

  104. WHO Consultation on Pre-Harvest Food Safety 26–28 Mar 2001, Berlin, Germany

    Google Scholar 

  105. Wilkins I, Stoner G Detecting the presence of microorganisms. Pat. 4009078 USA, MKU C 12 K 1/04. Applic. 16.12.75, Publ. 22.02.77

    Google Scholar 

  106. Xue T, Cui X, Guan W, Wang Q, Liu Ch, Wang H, Qi K, Singh DJ, Zheng W (2014) Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing. Biosens Bioelectron 58:374–379

    Article  Google Scholar 

  107. Zhang J, Sun Y, Xu B, Zhang H, Gao Y, Zhang H, Song D (2013) A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod–antibody conjugates for determination of transferrin. Biosens Bioelectron 45:230–236

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by EU funded BIOSENSORS-AGRICULT project (Development of nanotechnology based biosensors for agriculture FP7-PEOPLE-2012-IRSES, contract N. 318520) and NATO multi-year Science for Peace Project NUKR.SFPP 984637—“Development of Optical Bio-Sensors for Detection of Bio-Toxins” as well as National University of Life and Environmental Sciences of Ukraine, projects “Development of new generation of the instrumental analytical approaches based on the principles of nano-biotechnology and biosensorics for providing systems of biosafety” and “Creation of effective methods for the construction of artificial selective sites for the instrumental analytical devices of new generation based on the principles of biosensorics”, N 110/476-Appl. and №110/71-fund., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolaj F. Starodub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Starodub, N.F., Ogorodniichuk, Y.O., Novgorodova, O.O. (2016). Efficiency of Instrumental Analytical Approaches at the Control of Bacterial Infections in Water, Foods and Feeds. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_10

Download citation

Publish with us

Policies and ethics