Skip to main content

Function of Heat-Shock Proteins in Drought Tolerance Regulation of Plants

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Plants are sessile organisms and unlike all other organisms, they are constantly exposed to persistently changing environmental factors. Environmental stresses such as drought, cold, salinity, and hot temperatures are interrelated in their effects on plants. Drought stress is a significant factor that limits growth and productivity of plant species and is one of the major problems in the circumstances of global warming. Cells from all organisms, including plants, effectively respond to stresses by the synthesis of a highly conserved set of polypeptides termed heat-shock proteins (HSPs). The induced expression of these proteins is a common phenomenon in all living things. These proteins are grouped into five classes in plants according to their molecular weight: (1) Hsp100, (2) Hsp90, (3) Hsp70, (4) Hsp60, and (5) small heat-shock proteins (sHsps). There is considerable evidence that these stress response proteins play a major role in plants both normal and stress condition. In fact, Hsps are now understood to mediate signaling mechanism, host defense mechanisms, translation, carbohydrate metabolism, and amino acid metabolism by playing a significant function in controlling the genome and ultimately features that are obvious. Nevertheless, this chapter reveals the function of heat-shock proteins (HSPs), research progress on the response of Hsps in plant tolerance to drought stress as well as the role of Hsps under drought stress as an adaptive defense mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, et al. Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperones. 2001;6:219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25:1263–74.

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol. 1992;19:781–92.

    Article  CAS  PubMed  Google Scholar 

  • Alvim FC, Carolino SM, Cascardo JC, Nunes CC, Martinez CA, Otoni WC, Fontes EP. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol. 2001a;126:1042–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvim FC, et al. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol. 2001b;126:1042–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine SM, Syamaladevi DP, Premachandran MN, Ravichandran V, Subramonian N. Physiological and molecular insights to drought responsiveness in Erianthus spp. Sugar Tech. 2014. doi:10.1007/s12355-014-0312-7.

    Google Scholar 

  • Augustine SM, Ashwin NJ, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V. Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Sci. 2015;232:23–34.

    Article  CAS  PubMed  Google Scholar 

  • Barnett T, Altschuler M, McDaniel CN, Mascarenhas JP. Heat shock induced proteins in plant cells. Dev Genet. 1980;1:331–40.

    Article  CAS  Google Scholar 

  • Bharti K, Nover L. Heat stress-induced signaling. In: Scheel D, Wasternack C, editors. Plant Signal Transduction: Frontiers in Molecular Biology. Oxford: Oxford University Press; 2002. p. 74–115.

    Google Scholar 

  • Blum A. Plant breeding for stress environments. Boca Raton: CRC Press; 1988. 223 pages.

    Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multi gene family. J Mol Evol. 1994;38(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  • Boston RS, et al. Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996;32:191–222.

    Article  CAS  PubMed  Google Scholar 

  • Bray EA. Molecular response to water deficit. Plant Physiol. 1993;103:1035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner J. Hsp90 & Co.—a holding for folding. Trends Biochem Sci. 1999;24:136–41.

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92:351–66.

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Deuerling E, Pfund C, Craig EA. Getting newly synthesized proteins into shape. Cell. 2000;101:119–22.

    Article  CAS  PubMed  Google Scholar 

  • Burke JJ, Hatfield JL, Klein RR, Mullet JE. Accumulation of heat shock proteins in field grown cotton. Plant Physiol. 1985;78:394–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaitanya KV, Sundar D, Jutur PP, Ramachandrareddy A. Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Regul. 2003;40:75–80.

    Article  CAS  Google Scholar 

  • Chang CC, Huang PS, Lin HR, Lu CH. Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant Cell Physiol. 2007;48(8):1098–107.

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Choi YJ. A nuclear-localized HSP70 confers thermo protective activity and drought-stress tolerance on plants. Biotechnol Lett. 2009;31:597–606.

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Hong CB. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep. 2006;25(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka-Verner E, Yuan CX, Scharf KD, Englich G, Gurley WB. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol Biol. 2000;43(4):459–71.

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Foyer CH, Scott IM. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol. 1998;118:1455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRocher AE, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation. Plant J. 1994;5:93–102.

    Article  CAS  Google Scholar 

  • Dobson CM, Sali A, Karplus M. Protein folding: a perspective from theory and experiment. Angew Chem Int. 1998;37:868–93.

    Article  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high salt and cold responsive gene expression. Plant J. 2003;33:751–63.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DL, Guikema JA, Paulsen GM. Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress. Plant Physiol. 1990;92:740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999;79(2):425–49.

    CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant. 2006;127:343–52.

    Article  CAS  Google Scholar 

  • Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–47.

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi D, Breton C, Chaboud A, Vergne P, Dumas C. Expression of heat shock factors and heat shock protein 70 genes during maize pollen development. Plant Mol Biol. 1995;29:841–56.

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, et al. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci. 1999;96:13732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenway H, Munns R. Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol. 1980;312:149–90.

    Article  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D. Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci. 2013;205–206:38–47.

    Article  PubMed  CAS  Google Scholar 

  • Gurley WB. HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell. 2000;12:457–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyoergyey J, Gartner A, Nemet K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D. Alfalfa heat-shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol. 1991;16:999–1007.

    Article  Google Scholar 

  • Hall EA. Is dehydration tolerance relevant to genotypic differences in leaf senescence and crop adaptation to dry environments? In: Close TJ, Bray EA, editors. Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville: MD pp; 1993. p. 1–13.

    Google Scholar 

  • Hall A. Crop developmental responses to temperature, photoperiod, and light quality. In: Hall AE, editor. Crop response to environment. Boca Raton: CRC; 2001. p. 83–7.

    Google Scholar 

  • Hamdy A, Ragab R, Scarascia-Mugnozza E. Coping with water scarcity: water saving and increasing water productivity. Irrig Drain. 2003;52:3–20.

    Article  Google Scholar 

  • Hamilton EWIII, Heckathorn SA. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 2001;126:1266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381:571–80.

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295:1852–8.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:463–99.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila JJ, Papp JET, Schultz GA, Bewley JD. Induction of heat shock messenger RNA in maize mesocotyls by water stress, abscisic acid, and wounding. Plant Physiol. 1984;76:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helm KW, Lafayete PR, Nago RT, Key JL, Vierling E. Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol. 1993;13:238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmingsen SM, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988;26:330–4.

    Article  Google Scholar 

  • Hong SW, Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci. 2000a;97:4392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SW, Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci. 2000b;97:4392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SW, Vierling E. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 2001;27:25–35.

    Article  CAS  PubMed  Google Scholar 

  • Hong S-W, Lee U, Vierling E. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol. 2003;132:757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwich AL. Resurrection or destruction? Curr Biol. 1995;5:455–8.

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 2009;176:583–90.

    Article  CAS  PubMed  Google Scholar 

  • Hubel A, Schoffl F. Arabidopsis Heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol. 1994;26:353–62.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys MO. The contribution of conventional plant breeding to forage crop improvement, in Proceedings of the 18th International Grassland Congress. Canada: Saskatoon; 1999.

    Google Scholar 

  • Iba K. Acclimation response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol. 2002;53:225–45.

    Article  CAS  PubMed  Google Scholar 

  • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003;22:3557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa A, et al. Deletion of a chaperonin 60 b gene leads to cell death in the Arabidopsis lesion initiation 1 mutant. Plant Cell Physiol. 2003;44:255–61.

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Constan D, Akita M, Keegstra K. Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta. 2001;1541:102–13.

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, et al. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ. 2009;32:1046–59.

    Article  CAS  PubMed  Google Scholar 

  • Jones PD, Bradley RS. Climatic variations over last 500 years. In: Bradley RS, Jones PD, editors. Climate since A.D. 1500. London: Routledge; 1992. p. 665.

    Google Scholar 

  • Jones H. What is water use efficiency? In: Bacon MA, editor. Water use efficiency in plant biology. Oxford: Wiley-Blackwell; 2004. p. 27–41.

    Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol. 2003;51:677–86.

    Article  CAS  PubMed  Google Scholar 

  • Kelley WL. Molecular chaperones: how J domains turn on Hsp70s. Curr Biol. 1999;9:R305–8.

    Article  CAS  PubMed  Google Scholar 

  • Kermode AR. Approaches to elucidate the basis of desiccation tolerance in seeds. Seeds Sci Res. 1997;7:75–95.

    CAS  Google Scholar 

  • Key JL, Lin CY, Chen YM. Heat shock proteins of higher plants. Proc Natl Acad Sci U S A. 1981;78:3526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Yakota H, Santoso S, Lerner D, Kim R, Kim SH. Purification, crystallization and preliminary X-ray crystallographic data analysis of a small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J Struct Biol. 1998;121:76–80.

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett. 2012;34:371–7.

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Curr Opin Plant Biol. 2007;10:310–6.

    Article  CAS  PubMed  Google Scholar 

  • Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92:2177–86.

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Gloor G. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones. 2001;6:238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov VV, Rakitin V, Zholkevich VN. Effects of preliminary heat-shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiol Plant. 1999;107:399–406.

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL. Plant physiological ecology. 2nd ed. New York: Springer; 2008.

    Book  Google Scholar 

  • Larcher W. Physiological plant ecology. Ecophysiology and stress physiology of functional groups. 4th ed. Berlin: Springer; 2003. p. 504.

    Google Scholar 

  • Laufen T, Zuber U, Buchberger A, Bukau B. DnaJ proteins. In: Fink AL, Goto Y, editors. Molecular chaperones in proteins: structure, function and mode of action. New York: Marcel Dekker; 1998. p. 241–74.

    Google Scholar 

  • Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 2000;122:189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YRJ, et al. A soybean 101-kD heat shock protein complements a yeast HSP 104 deletion mutant in acquiring thermotolerance. Plant Cell. 1994;6:1889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Won SH, Lee HS, et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene. 2000;245(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E. The Arabidopsis ClpB/ Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 2006;49:115–27.

    Article  PubMed  CAS  Google Scholar 

  • Leprince O, Hendry GAF, McKersie BD. The mechanisms of desiccation tolerance in seeds. Seed Sci Res. 1993;3:231–46.

    Article  Google Scholar 

  • Levitt J. Responses of plants to environmental stress: chilling, freezing and high temperature stresses. 2nd ed. New York: Academic; 1980.

    Google Scholar 

  • Levitt M, Gerstein M, Huang E, Subbiah S, Tsai J. Protein folding: the endgame. Annu Rev Biochem. 1997;66:549–79.

    Article  CAS  PubMed  Google Scholar 

  • Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones. 2001;6:201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HC, Charng YY. Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav. 2012;7:547–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhang X, Cheng Y, Takano T, Liu S. RHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem. 2006;44:380–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, et al. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep. 2009;42:16–21.

    Article  PubMed  Google Scholar 

  • Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA. Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell. 1989;1(1223):1230.

    Google Scholar 

  • Majoul T, Bancel E, Triboi E, Ben Hamida J, Branlard G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics. 2003;3:175–83.

    Article  CAS  PubMed  Google Scholar 

  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T. Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium Hirsutum. Amer Inst Chem Engrs. 2009;26(1):21–5.

    Google Scholar 

  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miernyk JA. The 70kDa stress-related proteins as molecular chaperones. Trends Plant Sci. 1997;2:180–7.

    Article  Google Scholar 

  • Miernyk JA. Protein folding in the plant cell. Plant Physiol. 1999;121:695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milioni D, Hatzopoulos P. Genomic organization of Hsp90 gene family in Arabidopsis. Plant Mol Biol. 1997;35:955–61.

    Article  CAS  PubMed  Google Scholar 

  • Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem. 2003;278:31033–42.

    Article  CAS  PubMed  Google Scholar 

  • Molden D, editor. London, UK: Earthscan; Colombo. Sri Lanka: International Water Management Institute (IWMI); 2007. Water for food, water for life: A comprehensive assessment of water management in agriculture.

    Google Scholar 

  • Montero-Barrientos M. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol. 2010;167:659–65.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI. Regulation of the heat shook transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12:3788–96.

    Article  CAS  PubMed  Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLos One. 2013;8(12):e82264. doi:10.1371/journal.pone.0082264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, et al. Overexpression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed. 2004;13(2):165–75.

    Article  CAS  Google Scholar 

  • Nakamoto H, Vıgh L. The small heat shock proteins and their clients. Cell Mol Life Sci. 2007;64:294–306.

    Article  CAS  PubMed  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A class of chaperone-like ATPases associated with assembly, operation, and disassembly of protein complexes. Genome Res. 1999;9:27–43.

    CAS  PubMed  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot. 2007;58:3373–83.

    Article  CAS  PubMed  Google Scholar 

  • Ono K. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high temperature tolerance of tobacco during germination and early growth. Plant Sci. 2001;160:455–61.

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Singla SL, Grover A. Plant Hsp90 family with special reference to rice. J Biosci. 1998;23:361–7.

    Article  CAS  Google Scholar 

  • Parsell PA, Lindquist S. The function of heat-shock proteins in stress tolerance degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–96.

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C. Structure and mechanism of the hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006;75:271–94.

    Article  CAS  PubMed  Google Scholar 

  • Pelham H. Speculations on the major heat shock and glucose regulated proteins. Cell 46: 959-961. Plant Cell. 1986;6:1889–97.

    Google Scholar 

  • Prasad MVN. Plant Ecophysiology. New York, NY: John Wiley and Sons; 1997. ISBN 0-47-13157-1.

    Google Scholar 

  • Pratt WB, et al. Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 2001;6:54–5.

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Galigniana MD, Harrell JM, Deranco DB. Role of hsp90 and the hsp90-binding immunophilins in signaling protein movement. Cell Signal. 2004;16:857–72.

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot. 2002;53:989–1004.

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, et al. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett. 2011;585:231–9.

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000;12:479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002;417:618–24.

    Article  CAS  PubMed  Google Scholar 

  • Ranson NA, et al. Chaperonins. Biochem J. 1998;333:233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DM, White SJ, Zhou Y, Muralidharan M, Elthon TE. Altered gene expression in plants with constitutive expression of a mitochondrial small heat shock protein suggests the involvement of retrograde regulation in the heat stress response. Physiol Plant. 2005;123:435–44.

    Article  CAS  Google Scholar 

  • Richter K, Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol. 2001;188:281–90.

    Article  CAS  PubMed  Google Scholar 

  • Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998;396:336–42.

    Article  CAS  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett. 2004;557:265–8.

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Rose S, Zott W, Schoffl F, Nover L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 1990;9:4495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist SL. Hsp100/Clp proteins: A common mechanism explains diverse functions. Trends Biochem Sci. 1996;21:289–96.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger MJ. Heat shock proteins. J Biol Chem. 1990;265:12111–4.

    CAS  PubMed  Google Scholar 

  • Schoffl F, Prandl R, Reindl A. Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K, editors. Molecular responses to cold, drought, heat and salt stress in higher plants. Austin: R.G. Landes; 1999. p. 81–98.

    Google Scholar 

  • Seki M, Kamei A, Satou M, Sakurai T, Fujita M, Oono Y, Yamaguch-Shinozaki K, Shinozaki K. Transcriptome analysis in abiotic stress conditions in higher plants. Topics Curr Genet. 2003;4:271–95.

    Article  Google Scholar 

  • Seo JS, Lee YM, Park HG, Lee JS. The inter tidal copepod Tigriopus japonicas small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem Biophys Res Co. 2006;340:901–8.

    Article  CAS  Google Scholar 

  • Sharir NI, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 2005;17:1829–38.

    Article  CAS  Google Scholar 

  • Song A, Zhu X, Chen F, et al. A Chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci. 2014;15(3):5063–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorger PK, Nelson HCM. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell. 1989;59:807–13.

    Article  CAS  PubMed  Google Scholar 

  • Sticklen MB, Kenna MP. Turf grass Biotechnology. Cell and Molecular Approaches to Turf grass Improvement. Chelsea: Ann Arbor Press; 1998.

    Google Scholar 

  • Sun W, Motangu MV, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta. 2002;1577:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, et al. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep. 2012;31:1473–84.

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol. 2003;132:979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung DY, Vierling E, Guy CL. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 2001;126:789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of D. Melanogaster Relation to chromosome puffs. J Mol Biol. 1974;84:389–98.

    Article  CAS  PubMed  Google Scholar 

  • Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E. Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Mol Ecol. 2008;17:1614–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent JD. A review of acquired thermotolerance, heat-shock proteins and molecular chaperones in Archaea. FEMS Microbiol Rev. 1996;18:249–58.

    Article  CAS  Google Scholar 

  • Tsvetkova NM, Horvath I, Torok Z, et al. Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A. 2002;99:13504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida A, et al. Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica increases seed yield in rice and tobacco. Plant Biotechnol. 2008;25:141–50.

    Article  CAS  Google Scholar 

  • Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9:189–95.

    Article  CAS  PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol. 2001;8:1025–30.

    Article  PubMed  CAS  Google Scholar 

  • Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, De Koeyer D, Schafleitner R, Willmot DB, Bonierbale M, Bohnert HJ, Grene R. Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot. 2008;59(8):2109–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:579–620.

    Article  CAS  Google Scholar 

  • Wallner SJ, Becwar MR, Butler JD. Measurement of turfgrass heat tolerance in vitro. J Am Soc Hortic Sci. 1982;107:608–13.

    Google Scholar 

  • Wang ZY, Ge Y. Invited review: recent advances in genetic transformation of forage and turf grasses. Vitro Cell Dev Biol Plant. 2006;42(1):1–18.

    Article  CAS  Google Scholar 

  • Wang D, Luthe DS. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol. 2003;133:319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–52.

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, et al. Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot. 1996;47:325–38.

    Article  CAS  Google Scholar 

  • Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggest a general protective role in desiccation tolerance. Plant Physiol. 2000;122:1099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehmeyer N, Hernandez LD, Flinkelstein RR, Vierling E. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 1996;112:747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C. Heat stress transcription factors. Annu Rev Cell Biol. 1995;11:441–6.

    Article  CAS  Google Scholar 

  • Xin H, et al. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep. 2010;29:875–85.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem. 2012;287:5661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, et al. Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plant. 2010;54(1):105–11.

    Article  CAS  Google Scholar 

  • Yamada A, et al. The role of plant CCTa in salt- and osmotic stress tolerance. Plant Cell Physiol. 2002;43:1043–8.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun. 2008;368:515–21.

    Article  CAS  PubMed  Google Scholar 

  • Young JC, et al. Hsp90: a specialized but essential protein folding tool. J Cell Biol. 2001a;154:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JC, Moarefi I, Hartl U. Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001b;154:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver pre-proteins to the mitochondrial import receptor Tom70. Cell. 2003;112:41–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell. 2005;120:715–27.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, et al. NnHSP17.5 a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep. 2012;31:379–89.

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, et al. Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J Plant Res. 2006;119:247–56.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, et al. Ectopic over-expression of BhHsf1 a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Mol Biol. 2009;71:451–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sruthy Maria Augustine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Augustine, S.M. (2016). Function of Heat-Shock Proteins in Drought Tolerance Regulation of Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_7

Download citation

Publish with us

Policies and ethics