Skip to main content

Chemical Priming-Induced Drought Stress Tolerance in Plants

  • Chapter
  • First Online:

Abstract

Drought stress causes a significant decrease in the health and productivity of plants. Methods to prepare plants for drought stress by priming with exogenous treatments prior to water limitation are extremely desirable to agricultural industries as they may serve to mitigate plant damage and reduce crop loss. Exogenous priming treatments can have various physiological effects on plants. The observed effects are dependent on the method of application, the concentration and frequency of application, and the type of priming applied. Environmental conditions and plant species are also major factors determining whether a priming method may be effective. Many researchers have investigated various compounds to be used as priming agents, which has not only improved our understanding of the natural functions of the priming compound but has also provided many outlets for product and applied technology development. The objective of this chapter is to provide an overview of current priming methods and the major effects each priming method has on plant physiological health or stress defenses. The chapter will specifically focus on evaluating various exogenous materials or compounds that are effective in inducing drought tolerance in plants. The priming methods to be discussed include seed, foliar, and root based methods. The priming treatment types focused on in the chapter are applications of amino acids, nonprotein amino acids, polyamines, natural or synthetic plant growth regulators, and other compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzal I, Basra SMA, Cheema MA, et al. Seed priming: a shotgun approach for alleviation of salt stress in wheat. Int J Agric Biol. 2013;15:1199–203.

    CAS  Google Scholar 

  • Agboma PC, Sinclair TR, Jokinen K, et al. An evaluation of the effect of exogenous glycinebetaine on the growth and yield of soybean: timing of application, watering regimes and cultivars. Field Crops Res. 1997;54:51–64.

    Article  Google Scholar 

  • Ahmad R, Waraich EA, Nawaz F, et al. Selenium (Se) improves drought tolerance in crop plants—a myth or fact? J Sci Food Agric. 2015. doi:10.1002/jsfa.7231.

    Google Scholar 

  • Ajouri A, Haben A, Becker M. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci. 2004;167:630–6.

    Article  Google Scholar 

  • Akram NA, Ashraf M. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul. 2013;32:663–79.

    Article  CAS  Google Scholar 

  • Akter N, Islam MR, Karim MA, et al. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotechnol. 2014;17:41–8.

    Article  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep. 2014;8:279–93.

    Article  Google Scholar 

  • Alcazar R, Bitrian M, Bartels D, Koncz C, Altabella T, Tiburcio AF. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Sgl Behavior. 2011;6:243–50.

    Article  CAS  Google Scholar 

  • Ali B, Wang B, Ali S, et al. 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul. 2013;32:604–14. doi:10.1007/s00344-013-9328-6.

    Article  CAS  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009;150:1335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ameye M, Audenaert K, De Zutter N, et al. Priming of wheat with the green leaf volatile z-3-hexenyl acetate enhances defense against fusarium graminearum but boosts deoxynivalenol production. Plant Physiol. 2015;167:1671–84. doi:10.1104/pp.15.00107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci. 2011;197:177–85.

    Article  CAS  Google Scholar 

  • Araujo L, Bispo WS, Rios VS, et al. Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to ceratocystis fimbriata infection. Plant Dis. 2015;99:447–59.

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Expt Bot. 2007;59:206–16.

    Article  CAS  Google Scholar 

  • Athar H, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Expt Bot. 2008;63:224–31.

    Article  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, et al. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science. 2006;311:812–5.

    Article  CAS  PubMed  Google Scholar 

  • Balestrasse KB, Tomaro ML, Batlle A, et al. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phys Chem Chem Phys. 2010;71:2038–45.

    CAS  Google Scholar 

  • Bandurska H. The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum. 2005;27:379–86.

    Article  CAS  Google Scholar 

  • Beckers GJM, Conrath U. Priming for stress resistance: from the lab to the field. Curr Oper Plant Biol. 2007;10:425–31.

    Article  Google Scholar 

  • Bell AE. Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem. 2003;51:2854–65.

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Merewitz E, Huang B. Effects of trinexapac-ethyl on drought responses in creeping bentgrass associated with water use and osmotic adjustment. J Amer Soc Hort Sci. 2009;134:505–10.

    Google Scholar 

  • Bitrián M, Zarza X, Altabella T, et al. Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites. 2012;2:516–28. doi: 10.3390/metabo2030516.

    Google Scholar 

  • Bouché N, Fromm H. GABA in plants: Just a metabolite? Trends Plant Sci. 2004;9:110–5.

    Google Scholar 

  • Bown AW, Shelp BJ. The metabolism and functions of γ–aminobutyric acid. Plant Physiol. 1997;115:1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ. 2002;25:153–61.

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Liu W, Wang WS, et al. Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance. PLoS One. 2015;10(6), e0131599. doi:10.1371/journal.pone.0131599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci. 2005;168:521–30. doi:10.1002/jpln.200420485521.

    Article  CAS  Google Scholar 

  • Chen K, Arora R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci. 2011;180:212–20.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yao X, Cai K, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Element Res. 2011;142:67–76.

    Article  CAS  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, et al. Drought and salt stress tolerance of an Arabidopsis glutathione s-transferase u17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 2012a;158:340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Fessehaie A, Arora R. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci. 2012b;183:27–36. doi:10.1016/j.plantsci.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Fessehaie A, Arora R. Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biologia Plantarum. 2013;57:193–8.

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, et al. 2R,3R-butanediol, a bacterial volatile produced by pseudomonas chlororaphis o6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact. 2008;21:1067–75. doi:10.1094/MPMI-21-8-1067.

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Park JY, Han SH, et al. Identification and transcriptional analysis of priming genes in Arabidopsis thaliana induced by root colonization with pseudomonas chlororaphis O6. Plant Pathol J. 2011;27:272–9.

    Article  CAS  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, et al. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217:67–75. doi:10.1242/jeb.089938.

    Article  CAS  PubMed  Google Scholar 

  • Conrath U. Priming of induced plant defense responses. In: Van Loon LC, editor. Plant innate immunity, advances in botanical research, vol. 51. Oxford: Elsevier; 2009. p. 361–95.

    Google Scholar 

  • Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16:524–31.

    Article  CAS  PubMed  Google Scholar 

  • Cortez-Baheza E, Cruz-Fernandez F, Peraza-Luna F, et al. A new Lea gene is induced during osmopriming of Capsicum annuum L. seeds. Int J Bot. 2008;4:77–84.

    Article  CAS  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, et al. Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem. 2014;78:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Delker C, Stenzel I, Hause B, Miersch O, Feussner I, Wasternack C. Jasmonate biosynthesis in Arabidopsis thaliana—enzymes, products, regulation. Plant Biol. 2006;8:297–306. doi:10.1007/s00344-011-9216-x.

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Fromm M, Avramova Z. Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun. 2012;3:740. doi:10.1038/ncomms1732.

    Article  PubMed  CAS  Google Scholar 

  • Eisvand HR, Tavakkol-Afshari R, Sharifzadeh F, et al. Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum host). Seed Sci Technol. 2010;38:280–97.

    Article  Google Scholar 

  • Eivazi. Induction of drought tolerance with seed priming in wheat cultivars (Triticum aestivum L.). Int Res J Appl Basic Sci. 2011;2:95–105. doi:10.2478/v10014-012-0003-6.

    Google Scholar 

  • Fait A, Yellin A, Fromm H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett. 2005;579:415–20.

    Article  CAS  PubMed  Google Scholar 

  • Fait A, Fromm H, Walter D, et al. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 2008;13:14–9.

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Rehman H, et al. Seed priming with polyamines improves the germination and early seedling growth in fine rice. J New Seeds. 2008;9:145–55.

    Article  Google Scholar 

  • Farooq M, Wahid A, Lee DJ. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant. 2009;31:937–45.

    Article  CAS  Google Scholar 

  • Farooq M, Irfan M, Aziz T, et al. Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci. 2013;199:12–22.

    Article  CAS  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Laganà A. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics. 2014;108:238–57.

    Article  CAS  PubMed  Google Scholar 

  • Fukuto JM, Cho JY, Sitzer CH. The chemical properties of nitric oxide and related nitrogen oxides. In: Ignarro LJ, editor. Nitric oxide: biology and pathobiology. 2mdth ed. San Diego: Academic; 2000.

    Google Scholar 

  • Gallardo K, Job C, Groot S, et al. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001;126:835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SPC, et al. Proteomics of Arabidopsis seed germination and priming. In: Nicholas G et al., editors. The biology of seeds: recent advances. Cambridge: CABI; 2002. p. 199–209.

    Google Scholar 

  • Gao X, Zou C, Wang L, et al. Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr. 2006;29:1637–47.

    Article  CAS  Google Scholar 

  • Gong H, Chen K. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiologiae Plantarum. 2012;34(4):1589–94.

    Article  CAS  Google Scholar 

  • Groß F, Durner J, Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci. 2013;4:419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo P, Baum M, Grando S, et al. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Expt Bot. 2009;60:3531–44.

    Article  CAS  Google Scholar 

  • Habibi G. Silicon supplementation improves drought tolerance in canola plants. Russian J Plant Physiol. 2014;61:784–91.

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1991;21:79–102.

    Article  Google Scholar 

  • Hare PD, Cress WA, Staden JV. Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves. South African J Bot. 2002;68:393–6.

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res. 2011;143:1758–76.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M. Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res. 2010. doi:10.1007/s12011-011-8958-4.

    Google Scholar 

  • Hase S, Takahashi S, Takenaka S, et al. Involvement of jasmonic acid signaling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Path. 2008;57:870–6.

    Article  CAS  Google Scholar 

  • He C, Zhang W, Gao Q, et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica. 2011;177:151–67.

    Article  CAS  Google Scholar 

  • Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci. 2003;165:693–9.

    Article  CAS  Google Scholar 

  • Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul. 2007;26:290–300.

    Article  CAS  Google Scholar 

  • Horváth E, Brunner S, Bela K, et al. Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Func Plant Biol. 2015;42(12):1129–40.

    Google Scholar 

  • Hossain MA, Fujita M. Hydrogen peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.). Plant Gene Trait. 2013;4:109–23.

    Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci. 2015;6:420. doi:10.3389/fpls.2015.00420.

    PubMed  PubMed Central  Google Scholar 

  • Hu L, Wang Z, Huang B. Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky Bluegrass from drought stress. Crop Sci. 2013;53:221–31.

    Article  CAS  Google Scholar 

  • İşeri OD, Körpe DA, Sahin FI, et al. Seed priming to increase germination, drought tolerance and yield of cucumber. Adv Appl Agric Sci. 2015;03:42–53.

    Google Scholar 

  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH. Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol. 2011;168:1562–7.

    Google Scholar 

  • Jakab G, Ton J, Flors V, et al. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 2005;139:267–74. doi:10.1104/pp.105.065698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT. Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant. 2013;35:1381–96. doi:10.1007/s11738-012-1186-5.

    Article  Google Scholar 

  • Kadioglu A, Saruhan N, Sağlam A, et al. Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul. 2011;64:27–37.

    Article  CAS  Google Scholar 

  • Kairong L, Huike L, Jian W. Effect of natural brassinolide on drought resistance and yield of red fuji apple. Acta Hort Sinica. 2006;33:1059.

    Google Scholar 

  • Karakas B, Ozias-akins P, Stushnoff C, et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ. 1997;20:609–26.

    Article  Google Scholar 

  • Kaya C, Tuna AL, Alves AAC. Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant. 2006;28:331–7. doi:10.1007/s11738-006-0029-7.

    Article  CAS  Google Scholar 

  • Khan HA, Ziaf K, Amjad M, et al. Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean J Agric Res. 2012;72:429–33.

    Article  Google Scholar 

  • Kibinza S, Bazin J, Bailly C, et al. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci. 2011;181:309–15. doi:10.1016/j.plantsci.2011.06.003.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Maik BĆ. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Physiol Plant Mol Biol. 2010;61:561–91.

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ. Gamma aminobutyric acid (GABA) and plant response to stress. Crit Rev Plant Sci. 2000;19:479–509.

    Article  CAS  Google Scholar 

  • Kinoshita T, Seki M. Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 2014;55:1859–63. doi:10.1093/pcp/pcu125.

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A, Ozbay N, Tiryaki I, et al. Combining priming and plant growth regulators improves muskmelon germination and emergence at low temperatures. Euro J Hort Sci. 2005;70:29–34.

    CAS  Google Scholar 

  • Korkmaz A, Korkmaz Y, Demirkiran AR. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Expt Bot. 2010;67:495–501.

    Article  CAS  Google Scholar 

  • Krishnan S, Merewitz E. Drought stress and trinexapac-ethyl modify phytohormone content within kentucky bluegrass leaves. J Plant Growth Regul. 2015;34:1–12.

    Article  CAS  Google Scholar 

  • Krishnan S, Laskowski K, Shukla V, et al. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ– aminobutyric acid on perennial ryegrass. J Amer Soc Hort Sci. 2013;138:358–66.

    Google Scholar 

  • Kubala S, Wojtyla Ł, Met Q, et al. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol. 2015;183:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, et al. Polyamines: essential factors for growth and survival. Planta. 2008;228:367–81.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VV, Kholodova VP, Kuznetsov VV, et al. Selenium regulates the water status of plants exposed to drought. Doklady Biol Sci. 2003;390:266–8.

    Article  CAS  Google Scholar 

  • Lancien M, Roberts MR. Regulation of Arabidopsis thaliana 14–3–3 gene expression by γ–aminobutyric acid. Plant Cell Environ. 2006;29:1430–6.

    Article  CAS  PubMed  Google Scholar 

  • Lara TS, Lira JMS, Rodrigues AC, et al. Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination. J Agric Sci. 2014;6:72–9.

    Google Scholar 

  • Larkindale J, Huang B. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol. 2004;161:405–13.

    Article  CAS  PubMed  Google Scholar 

  • Li DM, Zhang J, Sun WJ, et al. 5-Aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity. Sci Hortic. 2011;130:820–8.

    Article  CAS  Google Scholar 

  • Liu H, Ji X, Yu B, et al. Relationship between osmotic stress and polyamines conjugated to the deoxyribonucleic acid-protein in wheat seedling roots. Sci China. 2006;49:12–7.

    Article  CAS  Google Scholar 

  • Liu D, Pei ZF, Naeem MS, et al. 5-aminolevulinic acid activates antioxidative defence system and seedling growth in brassica napus l. under water-deficit stress. J Agron Crop Sci. 2011;197:284–95.

    Article  CAS  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178:719–39.

    Article  PubMed  Google Scholar 

  • Merewitz E, Gianfagna T, Huang B. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Expt Bot. 2011;62:383–95. doi:10.1093/jxb/erq285.

    Article  CAS  Google Scholar 

  • Merewitz EB, Du H, Yu Q, et al. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J Expt Bot. 2012;63:1315–28.

    Article  CAS  Google Scholar 

  • Michaeli S, Fromm H. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front Plant Sci. 2015;6:419. doi:10.3389/fpls.2015.00419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? Trends Plant Sci. 2011;16:300–9. doi:10.1016/j.tplants.2011.03.007.

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Bose B. An impact of seed priming on disease resistance: a review. In: Kharwar, editor. Microbial diversity biotechnology food seconds. New York: Springer; 2014. p. 193–203.

    Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, et al. Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 2001;42(12):1383–8.

    Article  CAS  PubMed  Google Scholar 

  • Moustakas M, Sperdouli I, Kouna T, et al. Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regul. 2011;65:315–25.

    Article  CAS  Google Scholar 

  • Müssig C, Biesgen C, Lisso J, et al. A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. J Plant Physiol. 2000;157:143–52.

    Article  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam M, et al. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants. 2015;7:69–75.

    Article  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, et al. Nitric oxide, stomatal closure, and abiotic stress. J Expt Bot. 2008;59:165–76. doi:10.1093/jxb/erm293.

    Article  CAS  Google Scholar 

  • Nemeth M, Janda T, Horvath E, et al. Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci. 2002;162:569–74.

    Article  CAS  Google Scholar 

  • Nolla A, de Faria RJ, Korndörfer GH, et al. Effect of silicon on drought tolerance of upland rice. J Food Agric Environ. 2012;10:269–72.

    CAS  Google Scholar 

  • Ollas C, Hernando B, Arbona V, et al. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plantarum. 2012;147:296–306.

    Article  CAS  Google Scholar 

  • Paparella S, Araujo SS, Rossi G, et al. Seed priming: state of the art and new perspectives. Plant Cell Rep. 2015;34(8):1281–93.

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kodaira KS, Maruyama K, et al. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiol. 2011;157:1900–13. doi:10.1104/pp.111.187302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman TA, Oirdi ME, Gonzalez-Lamothe R, et al. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol Plant Microbe Interact. 2012;25:1584–93. doi:10.1094/MPMI-07-12-0187-R.

    Article  PubMed  CAS  Google Scholar 

  • Renault H, Amrani AE, Palanivelu R, et al. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Plant Cell Physiol. 2011;52:894–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei MA, Jokar I, Ghorbanli M, et al. Morpho-physiological improving effects of exogenous glycine betaine on tomato (Lycopersicum esculentum Mill.) cv. PS under drought stress conditions. Plant Omics J. 2012;5:79–86.

    CAS  Google Scholar 

  • Rosenthal GA. Plant nonprotein amino and imino acids. New York: Academic; 1982.

    Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance. Plant Cell. 1996;8:1809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savchenko T, Kolla VA, Wang CQ, et al. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 2014;164:1151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckin B, Sekman AH, Turkan I. An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul. 2009;28:12–20.

    Article  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, et al. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000a;30:157–61.

    Article  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, et al. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000b;30:157–61.

    Article  CAS  Google Scholar 

  • Serraj R, Shelp BJ, Sinclair TR. Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plant. 1998;102:79–86.

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma—aminobutyric acid. Trends Plant Sci. 1999;4:446–52.

    Article  PubMed  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, et al. Strategies and tools for studying the metabolism and function of γ–aminobutyrate in plants. I Pathway structure. Botany. 2012;90:651–68.

    Article  CAS  Google Scholar 

  • Shen X, Zhou Y, Duan L, et al. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol. 2010;167:1248–52.

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chan Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol. 2014;56:114–21.

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Zhulong C. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. J Proteome Res. 2013. doi:10.1021/pr400479k.

    Google Scholar 

  • Sidana S, Bose J, Shabala L, et al. Nitric oxide in drought stress signaling and tolerance in plants. In: Khan M, Mobin M, Mohammad F, Corpas FJ, editors. Nitric oxide action in abiotic stress responses in plants. Switzerland: Springer International; 2015.

    Google Scholar 

  • Song ZZ, Yang SY, Zuo J, et al. Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Biologia Plantarum. 2014;58:649–58.

    Article  CAS  Google Scholar 

  • Sós-Hegedűs A, Juhás Z, Poór P, et al. Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato. PLoS One. 2014;9(12), e114297. doi:10.1371/journal.pone.0114297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theerakulpisut P, Gunnula W. Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt-tolerant rice seedlings. Asian J Crop Sci. 2012;4:165–70.

    Article  Google Scholar 

  • Ton J, Jakab G, Toquin V, et al. Dissecting the β-aminobutyric acid–induced priming phenomenon in Arabidopsis. Plant Cell. 2005;17:987–99. doi:10.1105/tpc.104.029728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, D’Alessandro M, Jourdie V, et al. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 2007;49:16–26.

    Article  CAS  PubMed  Google Scholar 

  • Torrigiani P, Bressanin D, Ruiz KB. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant. 2012;146:86–98.

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, et al. Transcriptome analyses give insights into selenium‐stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant. 2008;132:236–53.

    PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Phys Mol Plant Pathol. 1999;55:85–97.

    Article  Google Scholar 

  • Vardhini BV. Brassinosteroids’ role for amino acids, peptides and amines modulation in stressed plants—a review. In: Anjum NA et al., editors. Plant adaptation to environmental change: significance of amino acids and their derivatives. Wallingford, CT: CAB International; 2014.

    Google Scholar 

  • Vardhini BV, Anjum NA. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci. 2015;2:67.

    Article  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol. 2007;164:1367–76.

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumari K, Puthur JT. γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul. 2015;12:2–11. doi:10.1007/s10725-015-0074-6.

    Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, et al. Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Curr Genom. 2013;14:157–65.

    Article  CAS  Google Scholar 

  • Waseem M, Athar HUR, Ashraf M. Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak J Bot. 2006;38:1127–36.

    Google Scholar 

  • Wei J, Li C, Li Y, et al. Effects of external potassium (k) supply on drought tolerances of two contrasting winter wheat cultivars. PLoS One. 2013;8(7), e69737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie SS, Wu HJ, Zang HY, et al. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact. 2014;27:655–63.

    Article  CAS  PubMed  Google Scholar 

  • Yan M. Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African J Bot. 2015;99:88–92.

    Google Scholar 

  • Yan H, ZhiGang L, YunZhao C, YuGuo W. Effects of exogenous proline on the physiology of soyabean plantlets regenerated from embryos in vitro and on the ultrastructure of their mitochondria under NaCl stress. Soybean Sc. 2000;19:314–9.

    Google Scholar 

  • Yang A, Cao S, Yang Z, et al. γ– Aminobutyric acid treatment reduces chilling injury and activates the defense response of peach fruit. Food Chem. 2011;129:1619–22.

    Article  CAS  Google Scholar 

  • Yang DL, Yao J, Mei CS, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A. 2012;109(9):152–99. doi:10.1073/pnas.1201616109.

    Google Scholar 

  • Yang Z, Chang Z, Sun L, et al. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PLoS One. 2014. doi:10.1371/journal.pone.0116283.

    Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell. 2008;20:1678–92. doi:10.1105/tpc.107.054296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Wang S, Liu P, et al. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem. 2014;80:268–77.

    Article  CAS  PubMed  Google Scholar 

  • Zare N, Noori S, Ahmad S, et al. Effect of laser priming on accumulation of free proline in spring durum wheat (Triticum turgidum L.) under salinity stress. Intl Transaction J Eng Mgt App Sci Tech. 2014;5:119–75.

    Google Scholar 

  • Zhang MQ, Chen RK, Yu SL. Changes of polyamine metabolism in drought-stressed sugarcane leaves and their relation to drought resistance. Acta Phytophysiologia Sinica. 1996;22:327–32.

    CAS  Google Scholar 

  • Zhang M, Zhai Z, Tian X, et al. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul. 2008;56:257–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Merewitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Merewitz, E. (2016). Chemical Priming-Induced Drought Stress Tolerance in Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_4

Download citation

Publish with us

Policies and ethics