Skip to main content

Antioxidant Signaling and Redox Regulation in Drought- and Salinity-Stressed Plants

  • Chapter
  • First Online:

Abstract

Drought and salinity alter redox homeostasis by disrupting basic metabolic processes, such as photosynthesis, respiration, photorespiration, among others, and ultimately causing nonspecific oxidative damage. Information-rich redox buffers in the form of low-molecular-weight antioxidants combined with several other antioxidative enzymes combat those adverse changes. Significantly, antioxidants have been found to provide essential information on the redox state and to influence gene expression under dehydration and salinity stress, which offer protection and stress acclimation. A growing body of evidence strongly suggests the importance of the role of redox homeostasis under salinity and dehydration stress in which the reactive oxygen species (ROS) and antioxidants interact at the metabolic interface for a signal derived from unfavorable environmental cues. This review attempts to detail the role of redox regulation and antioxidant signaling in response to dehydration and salinity stress. In addition, it elaborates our current understanding of ROS–antioxidant interactions in sensing the salinity and dehydration stresses and initiating the signaling necessary for survival.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM. Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 2007;143:1720–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abogadallah GM. Antioxidative defense under salt stress. Plant Signal Behav. 2010;5(4):369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, et al. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 2008;18:656–60.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Planta. 2010;54:201–12.

    Article  CAS  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol. 2013;54:102–23.

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285:1256–8.

    Article  CAS  PubMed  Google Scholar 

  • Arnholdt-Schmitt B, Costa JH, De Melo DF. AOX—a functional marker for efficient cell reprogramming under stress? Trends Plant Sci. 2006;11:281–7.

    Article  CAS  PubMed  Google Scholar 

  • Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:601–39.

    Article  CAS  PubMed  Google Scholar 

  • Asada K. The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci. 2000;355:1419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141:391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Akram NA. Improving salinity tolerance of plants through conventional breeding and genetic engineering: analytical comparison. Biotechnology. 2009;27:744–52.

    CAS  Google Scholar 

  • Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59:206–16.

    Article  CAS  Google Scholar 

  • Attia H, Arnaud N, Karray N, Lachaâl M. Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression on Arabidopsis rosette leaves. Physiol Plant. 2008;132:293–305.

    Article  CAS  PubMed  Google Scholar 

  • Aubert S, Hennion F, Bouchereau A, Gout E, Bringly R, Dorne AJ. Subcellular compartmentation of proline in the leaves of the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br. in vivo 13C-NMR study. Plant Cell Environ. 1999;22:255–9.

    Article  CAS  Google Scholar 

  • Badawi GH, Yamauchia Y, Shimada E, Sasaki R, Kawano N, et al. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci. 2004;66:919–28.

    Article  CAS  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot. 2004;403:1663–9.

    Article  CAS  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP. Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell. 2010;22:376–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CE, Elsen S, Bird TH. Mechanisms for redox control of gene expression. Annu Rev Microbiol. 1999;53:495–523.

    Article  CAS  PubMed  Google Scholar 

  • Ben Hamed K, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Bosch SM, Savoure A, Abdelly C. Physiological response of halophytes to multiple stresses. Funct Plant Biol. 2013;40:883–96.

    Google Scholar 

  • Ben Hassine A, Ghanem ME, Bouzid S, Lutts S. An inland and a coastal population of the Mediterranean xerohalophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot. 2008;59:1315–26.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci. 2005;89(7):1113–21.

    CAS  Google Scholar 

  • Bhattacharjee S. An inductive pulse of hydrogen peroxide pretreatment restores redox- homeostasis and mitigates oxidative membrane damage under extremes of temperature in two rice cultivars (Oryza sativa L., Cultivars Ratna and SR 26B). Plant Growth Regul. 2012;68:395–410.

    Google Scholar 

  • Bhattacharjee S. Membrane lipid peroxidation and its conflict of interest: two faces of oxidative stress. Curr Sci. 2014;107(11):1811–23.

    Google Scholar 

  • Biehler K, Fock H. Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought stressed wheat. Plant Physiol. 1996;112:265–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blake DR, Allen RE, Lunec J. Free radicals in biological systems—a review oriented to inflammatory process. Br Med Bull. 1987;43:371–85.

    CAS  PubMed  Google Scholar 

  • Boguszewska D, Grudkowska M, Zagdańska B. Drought responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res. 2010;53:373–82.

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Lima JPMS, Ferreira-Silva SL, Viegas RS, Silveira JAG. Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol. 2007;164:591–600.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Bhattacharjee S. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol. 2014;176:65–77.

    Google Scholar 

  • Chaves MM, Maroco JO, Pereira JS. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol. 2003;30:239–64.

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR. Increasing tolerance to ozone by elevating folia ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol. 2005;138:1673–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang M, Shen S. Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant. 2010;33:273–8.

    Article  CAS  Google Scholar 

  • Chen Q, Tao S, Bi X, Xu X, Wang L, Li X. Research progress in physiological and molecular biology mechanism of drought resistance in rice. Am J Mol Biol. 2013;3(2):102–7.

    Article  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R. The ear-motif of the C2H2 zinc-finger protein ZAT7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem. 2007;282:9260–8.

    Article  CAS  PubMed  Google Scholar 

  • Collins A. Carotenoids and genomic stability. Mutat Res. 2001;475:1–28.

    Article  Google Scholar 

  • Creissen GP, Broadbent P, Kular B, Reynolds H, Wellburn AR, Mullineaux PM. Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc R Soc Edinb. 1994;102B:167–75.

    Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signalling network. Annu Rev Plant Biol. 2010;61:651–79.

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J. 2003;33:621–32.

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005a;17:268–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 2005b;139:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz M, de Carvalho H. Drought stress and reactive oxygen species production, scavenging and signalling. Plant Signal Behav. 2008;3(3):156–65.

    Article  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot. 2002a;53:1255–72.

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Corpas FJ, LópezHuertas E, Romero-Puertas MC, McCarthy I. Peroxisomes, reactive oxygen metabolism, and stress-related enzyme activities. In: Baker A, Graham I, editors. Plant peroxisomes biochemistry, cell biology and biotechnological applications. Dordrecht: Kluwer Academic; 2002b. p. 221–58.

    Google Scholar 

  • Delauney A, Pflieger D, Barrault MB, Vinh J, Toledano MB. A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell. 2002;111:1–11.

    Article  Google Scholar 

  • Depège N, Drevet J, Boyer N. Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins. Eur J Biochem. 1998;253:445–51.

    Article  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 2005;137:831–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, García JA, Martínez-Gómez P, Hernández JA. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot. 2008;59:2147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, De Miranda SM, Baier M, Finkemeier I. The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot. 2006;57:1697–709.

    Article  CAS  PubMed  Google Scholar 

  • Dietzel L, Pfannschmidt T. Photosynthetic acclimation to light gradients in plant stands comes out of shade. Plant Signal Behav. 2008;3:1116–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinakar C, Abhaypratap V, Yearla SR, Raghavendra AS, Padmasree K. Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta. 2010;231:461–74.

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot. 2013;64(11):3077–86.

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry. 2010;71(4):338–50. doi:10.1016/j.phytochem.2009.12.012.

    Article  CAS  PubMed  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta. 1990;180:278–84.

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant. 2006;127:57–65.

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta. 2007;225:1255–64.

    Article  CAS  PubMed  Google Scholar 

  • Eyidogan F, Oz MT. Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant. 2005;29:485–93.

    Article  CAS  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Srinivasan S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD. Salt sensitivity in chickpea. Plant Cell Environ. 2010;33:490–509.

    Google Scholar 

  • Foyer CH, Noctor G. Oxygen processing in photosynthesis: regulation and signaling. New Phytol. 2000;146(3):359–88.

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005a;28:1056–71.

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005b;17:1866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid Redox Signal. 2009;11:861–905.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ. Oxidative stress in plants. Physiol Plant. 1994;92:696–717.

    Article  CAS  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996;112:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambarova NG, Gins MS. Characteristics of oxidative stress of plants with C3 and C4 photosynthesis during salinization. Russ Agric Sci. 2008;34:77–80.

    Article  Google Scholar 

  • Gapinska M, Skłodowska M, Gabara B. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant. 2008;30:11–8.

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea N, Antolin MC, Sánchez-Díaz M. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant. 1997;100:989–97.

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plant: unravelling the signalling networks. Front Plant Sci. 2014;5:151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grene R. Oxidative stress and acclimation mechanisms in plants. In: Somerville CR, Meyerowitz EM, editors. The Arabidopsis book. Rockville: The American Society of Plant Biologists; 2002. p. 1–20.

    Google Scholar 

  • Gunes A, Pilbeam D, Inal A, Coban S. Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms and lipid peroxidation. Commun Soil Sci Plant Anal. 2008;39:1885–903.

    Article  CAS  Google Scholar 

  • Gupta R, Luan S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 2003;132:1149–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton EW, Heckathorn SA. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas Complex II is protected by proline and betaine. Plant Physiol. 2001;126:1266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH. SUBA: the Arabidopsis subcellular database. Nucleic Acids Res. 2007;35:D213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojati M, Modarres-Sanavy SAM, Karimi M, Ghanati F. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiol Plant. 2010;33:105–12.

    Article  Google Scholar 

  • Hong CY, Hsu YT, Tsai YC, Kao CH. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot. 2007;58:3273–83.

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Foyer CH, Asard H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 2000;5:263–7.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin S-M, Quin P, Xin W, Li H-Y, Buritt D J, Fujita M, Tran Lam Son. Hydrogen peroxide priming modulates abiotic oxidative stress: insight from ROS detoxification and scavenging. Frontiers in Plants Sci. doi:10.3389/fpls..2015.00420.

  • Hu X, Zhang A, Zhang J, Jiang M. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol. 2006;47:1484–95.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D'Ippólito S, Casalongué CA. Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol. 2010;74:215–22.

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:377–403.

    Article  CAS  PubMed  Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol. 2005;162:929–36.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernandez JA, Del Río LA, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 1997;114:275–84.

    PubMed  PubMed Central  Google Scholar 

  • Jogeswar G, Pallela R, Jakka NM, Reddy PS, Rao JV, Sreenivasulu N, Kavi Kishor PB. Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiol Plant. 2006;28:465–75.

    Article  CAS  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV. Different signaling and cell death roles of heterotrimeric G protein a and b subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell. 2005;17:957–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubany-Marí T, Munné-Bosch S, Lopez-Carbonell M, Alegre L. Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. J Exp Bot. 2009;60:107–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurca ME, Bottka S, Fehér A. Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep. 2008;27(4):739–48.

    Article  CAS  PubMed  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M. A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol. 2008;49:1272–82.

    Article  CAS  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701.

    Article  CAS  PubMed  Google Scholar 

  • Karpinska B, Wingsle G, Karpinski S. Antagonistic effects of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. IUBMB Life. 2000;50:21–6.

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Manoharan K. Uptake and translocation of tri- and hexa-valent chromium and their effects on black gram (Vigna mungo L. Hepper cv. Co4) roots. J Plant Biol. 2008;51:192–201.

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Kamarul Haniya A, Manoharan K. Differential antioxidative responses of ascorbate-glutathione cycle enzymes and metabolites to chromium stress in green gram (Vigna radiata L. Wilczek) leaves. J Plant Biol. 2006a;49:440–7.

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Premkumar G, Manoharan K. Chromium toxicity: correlated with increased in degradation of photosynthetic pigments and total soluble protein and increased peroxidase activity in green gram (Vigna radiata L.) seedlings. J Swamy Bot Cl. 2006b;23:117–22.

    Google Scholar 

  • Koji Y, Shiro M, Michio K, Mitsutaka T, Hiroshi M. Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant Prod Sci. 2009;12:319–26.

    Article  Google Scholar 

  • Koornneef M, Leon-Kloosterziel KM, Schwartz S, Hand Zeevaart JAD. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem. 1998;36:83–9.

    Article  CAS  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem. 2008;283:34197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A. 2000;97:2940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J Exp Bot. 2005;56(411):337–46.

    Article  CAS  PubMed  Google Scholar 

  • Kukreja S, Nandval AS, Kumar N, Sharma SK, Unvi V, Sharma PK. Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant. 2005;49:305–8.

    Article  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J. 2003;22:2623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WJ, Feng H, Fan JH, Zhang RQ, Zhao NM, Liu JY. Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. Biochim Biophys Acta. 2000;1493:225–30.

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Gueta-Dahan Y, Lev-Yadun S, Gollop R, Ben-Hayyim G. The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol. 2004;135:1685–96.

    Article  Google Scholar 

  • Li JT, Qiu ZB, Zhang XW, Wang LS. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant. 2011;33:835–42. doi:10.1007/s11738-010-0608-5.

    Google Scholar 

  • Light GG, Mahan JR, Roxas VP, Allen RD. Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta. 2005;222:346–54.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham I, Baker A. Stress induces peroxisome biogenesis genes. EMBO J. 2000;19(24):6770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZQ, Liu D, Liu SK. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2007;26:1909–17.

    Article  CAS  PubMed  Google Scholar 

  • Malan C, Greyling M, Gressel J. Correlation between Cu Zn superoxide dismutase and glutathione reductase and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci. 1990;69:157–66.

    Article  CAS  Google Scholar 

  • Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G, et al. Tackling drought stress: receptor-like kinases present new approaches. Plant Cell. 2012;24(6):2262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martí MC, Olmos E, Calvete JJ, Díaz I, Barranco-Medina S, Whelan J, et al. Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins. Plant Physiol. 2009;150:646–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matysik J, Alia A, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci. 2002;82:525–32.

    CAS  Google Scholar 

  • Mhamdi A, et al. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot. 2010;61:4107–320.

    Article  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH. Control of ascorbate synthesis by respiration and its implication for stress responses. Plant Physiol. 2003;133:443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 2007;144:1777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133:481–9.

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–67.

    Article  CAS  PubMed  Google Scholar 

  • Mittal R, Dubey RS. Behaviour of peroxidases in rice: changes in enzymatic activity and isoforms in relation to salt tolerance. Plant Physiol Biochem. 1991;29:31–40.

    Google Scholar 

  • Mittler R. Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci. 2002;7:405–10.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;10:490–8.

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 2003;26:845–56.

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Volokita M, Guy M, Tal M. Activities of SOD and the ascorbate–glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant. 2000;110:42–51.

    Google Scholar 

  • Moller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007;58:459–81.

    Article  PubMed  CAS  Google Scholar 

  • Morris ER, Walker JC. Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol. 2003;6(4):339–42.

    Article  CAS  PubMed  Google Scholar 

  • Mortensen A, Skibsted LH, Truscott TG. The interaction of dietary carotenoids with radical species. Arch Biochem Biophys. 2001;385:13–9.

    Article  CAS  PubMed  Google Scholar 

  • Mueller MJ. Archetype signals in plants: the phytoprostanes. Curr Opin Plant Biol. 2004;7:441–8.

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S. The role of a-tocopherol in plant stress tolerance. J Plant Physiol. 2005;162:743–8.

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 2006;57(5):1025–43.

    Article  CAS  PubMed  Google Scholar 

  • Mϋhlenbock P, et al. Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell. 2008;20:2339–56.

    Article  CAS  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A. Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep. 2007;1:49–55.

    Article  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol. 2007;144:1104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Foyer CH. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot. 1998a;49:1895–908.

    CAS  Google Scholar 

  • Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998b;49:249–79.

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation, and transport in the control of glutathione homeostasis and signalling. J Exp Bot. 2002a;53:1283–304.

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH. Drought and oxidative load in wheat leaves: a predominant role for photorespiration? Ann Bot. 2002b;89:841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 2007;12:125–34.

    Article  CAS  PubMed  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol. 2004;134:492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycorhiza uralensis Fisch). J Plant Growth Regul. 2006;49:157–65.

    Article  CAS  Google Scholar 

  • Panda SK. Response of green gram seeds under salinity stress. Indian J Plant Physiol. 2001;6:438–40.

    Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot. 2007;58:195–210.

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci. 2003;8(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 2003;157(1):135–43.

    Article  CAS  Google Scholar 

  • Pospíšilová J, Synková H, Rulcová J. Cytokinins and water stress. Biol Planta. 2000;43:321–8.

    Article  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA. Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev. 2008;19(4):429–53.

    Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15:395–401.

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol. 2014;166(3):1634–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao ASVC, Reddy AR. Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S, editors. Sulfur assimilation and abiotic stresses in plants. Dordrecht: Springer; 2008. p. 111–47.

    Chapter  Google Scholar 

  • Rasmusson AG, Wallstrom SV. Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels. Biochem Soc Trans. 2010;38:661–6.

    Article  CAS  PubMed  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Peterson L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR. OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature. 2004;427:858–61.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Subbaiah CC. Mitochondrial retrograde regulation in plants. Mitochondrion. 2007;7:177–94.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 2006;141:357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 2002;32:329–42.

    Article  CAS  PubMed  Google Scholar 

  • Roje S. S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry. 2006;67:1686–98.

    Article  CAS  PubMed  Google Scholar 

  • Ros Barceló A. Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta. 2005;220:747–56.

    Article  PubMed  CAS  Google Scholar 

  • Rossa MM, De Oliveira MC, Okamoto OK, Lopes PF, Colepicolo P. Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J Appl Phycol. 2002;14:151–7.

    Article  CAS  Google Scholar 

  • Sakamoto M, Munemura I, Tomita R, Kobayashi K. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J. 2008;56:13–27.

    Article  CAS  PubMed  Google Scholar 

  • Sayfzadeh S, Rashidi M. Response of antioxidant enzymes activities of sugar beet to drought stress. J Agric Biol Sci. 2011;6:27–33.

    Google Scholar 

  • Scandaliol JG. Oxygen stress and super oxide dimutases. Plant Physiol. 1993;101(1):7–12.

    Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barley grass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot. 2010;69(1):76–85.

    Article  CAS  Google Scholar 

  • Setterdahl AT, Chivers PT, Hirasawa M, Lemaire SD, Keryer E, Miginiac-Maslow M, Kim SK, Mason J, Jacquot JP, Longbine CC, de Lamotte-Guery F, Knaff DB. Effect of pH on the oxidation-reduction properties of thioredoxins. Biochemistry. 2003;42:14877–84.

    Article  CAS  PubMed  Google Scholar 

  • Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry. 1994;35:561–5.

    Article  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M. Response of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: the root antioxidative system. Physiol Planta. 2001;122:487–94.

    Article  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM. Higher plant antioxidants and redox signaling under environmental stresses. C R Biol. 2008;331(6):433–41.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol. 2005;162:854–64.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012:217037. doi:http://dx.doi.org/10.1155/2012/217037.

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 2000;3:217–23.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6:410–7.

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A. 2001;98(19):10763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132:530–43.

    Google Scholar 

  • Sierla M, Rahikainen M, Salojarvi J, Kangasjarvi J, Kangasjarvi S. Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxid Redox Signal. 2013;18:2220–39.

    Article  CAS  PubMed  Google Scholar 

  • Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem. 2010;48:200–6.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol. 2000;3:229–35.

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W. Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPx gene specifically upregulated by NaCl in a salt-tolerant line. J Plant Physiol. 2004;161:467–77.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Bhargava P, Rai LC. Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. W J Microb Biotechnol. 2005;22:1291–8.

    Article  CAS  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM. Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci. 1996;1:139–55.

    Article  Google Scholar 

  • Storey KB. Oxidative stress: animal adaptations in nature. Braz J Med Biol Res. 1996;29:1715–33.

    Google Scholar 

  • Sun YY, Sun YJ, Wang MT, Li XY, Guo X, Hu R, Ma J. Effects of seed priming on germination and seedling growth of rice under water stress. Acta Agron Sin. 2010;36(11):1931–40.

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signaling in the response of plants to abiotic stresses. Plant Cell Environ. 2011;10:1365–3040.

    Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993;259:508–10.

    Article  CAS  PubMed  Google Scholar 

  • Taylor NL, Day DA, Millar AH. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem. 2002;277:42663–8.

    Article  CAS  PubMed  Google Scholar 

  • Taylor NL, Day DA, Millar AH. Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J Exp Bot. 2004;55:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:571–99.

    Article  CAS  PubMed  Google Scholar 

  • Tippmann HF, Schluter U, Collinge DB. Common themes in biotic and abiotic stress signalling in plants. Floric Ornam Plant Biotechnol. 2006;3:52–67.

    Google Scholar 

  • Torres MA. ROS in biotic interactions. Physiol Plant. 2010;138:414–29.

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol. 2005;8:397–403.

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol. 2006;163:1179–84.

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inze D, Van Breusegem F. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 2004;39:45–58.

    Article  CAS  PubMed  Google Scholar 

  • Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C. Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol. 2010;154:444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, Vieira LG. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol. 2007;164:1367–76.

    Article  CAS  PubMed  Google Scholar 

  • Vieira Dos Santos C, Rey P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006;11:329–34.

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant. 2008;1(5):732–50.

    Article  CAS  PubMed  Google Scholar 

  • Vranova E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress. J Exp Bot. 2002;53:1227–36.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang XC. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 2004;167:671–7.

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui MG, Dandekar A, Fuchigami L. Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Horticult. 2007;9:3–8.

    Google Scholar 

  • Wang L, Zhou Q, Ding L, Sun Y. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater. 2008;154:818–25.

    Article  CAS  PubMed  Google Scholar 

  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR. Structural and functional insights into core ABA signaling. Curr Opin Plant Biol. 2010;13:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot. 2009;60(12):3545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodson JD, Chory J. Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet. 2008;9:383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 2008;148:1953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Xu X, Yang F. Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fenn. 2008;42:705–19.

    Article  Google Scholar 

  • Xing Y, Jia W, Zhang J. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 2008;54:440–51.

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002;14 Suppl 1:S165–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005;10:88–94.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol. 2009;70:219–29.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, FujitaY SH, Kidokoro S, Maruyama K, Mizoi J. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signalling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010;61:672–85.

    Article  CAS  PubMed  Google Scholar 

  • Zer H, Ohad I. Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends Biochem Sci. 2003;28:467–70.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Fu X, Koo YD, et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol. 2007;27:5214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT. Comparison of resistance to drought of three bean cultivars. Biol Plant. 2006;50:389–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.C., N.D. acknowledges UGC, New Delhi, and Govt. of West Bengal, respectively, for Research fellowship. Research facility of CAS (UGC) Govt. of India to the Department of Botany, University of Burdwan is also gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Bhattacharjee Ph D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakrabarty, A., Aditya, M., Dey, N., Banik, N., Bhattacharjee, S. (2016). Antioxidant Signaling and Redox Regulation in Drought- and Salinity-Stressed Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_20

Download citation

Publish with us

Policies and ethics