Skip to main content

Glyoxalase Pathway and Drought Stress Tolerance in Plants

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

The ubiquitously present glyoxalase pathway consists of two enzymes, Glyoxalase I and Glyoxalase II, which act in a stepwise manner and catalyze the detoxification of a highly cytotoxic metabolite methylglyoxal to d-lactate with the help of glutathione. Methylglyoxal (MG) is generated endogenously through different enzymatic and nonenzymatic reactions and is a potent glycating agent. It inhibits cell division and forms various degrees of irreversible adducts with cellular macromolecules such as nucleic acids, lipids, and proteins. MG along with reactive oxygen species (ROS) has been shown to accumulate in plant cells in response to various abiotic stresses including drought and their accumulation results in an imbalance in different cellular metabolic processes. Plants being sessile organisms have evolved various mechanisms that permit them to cope with and withstand various degrees of stress. The glyoxalase pathway is one such mechanism which acts to control excessive accumulation of MG and ROS in the system, either directly or in cooperation with other pathways involved in stress response. In response to drought, transcript and protein levels of glyoxalases are altered which is suggestive of their involvement in stress response. MG has also been shown to induce stress-responsive signaling cascades related to drought and even regulates stomatal movements. Here, we discuss the role of the plant glyoxalase pathway with respect to drought stress adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja I, de Vos RCH, Bones AM, Hall RD. Plant molecular stress responses face climate change. Trends Plant Sci. 2010;12:664–74.

    Article  CAS  Google Scholar 

  • Akashi K, Yoshida K, Kuwano M, Kajikawa M, Yoshimura K, Hoshiyasu S, Inagaki N, Yokota A. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta. 2011;233:947–60.

    Article  CAS  PubMed  Google Scholar 

  • Akhland AA, Hossain K, Mitsui H, Kato M, Miyata T, Inagi R, Du J, Takeda K, Kawamoto Y, Suzuki H, Kurokawa K, Nakashima I. Glyoxal and methylglyoxal trigger distinct signals for MAP family kinases and caspase activation in human endothelial cells. Free Radic Biol Med. 2001;31:20–30.

    Article  Google Scholar 

  • Akram M. Growth and yield components of wheat under water stress of different growth stages. Bangladesh J Agric Res. 2011;36:455–68.

    Article  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M. Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust J Crop Sci. 2013;7:1053–63.

    CAS  Google Scholar 

  • Aleksandrovskii YA. Antithrombin III, C1 inhibitor, methylglyoxal, and polymorphonuclear leukocytes in the development of vascular complications in diabetes mellitus. Thromb Res. 1992;67:179–89.

    Article  CAS  PubMed  Google Scholar 

  • Alexandre C, Möller-Steinbach Y, Schönrock N, Gruissem W, Hennig L. Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol Plant. 2009;2(4):675–87.

    Article  CAS  PubMed  Google Scholar 

  • Amicarelli F, Colafarina S, Cattani F, Cimini A, Di Ilio C, Ceru MP, Miranda M. Scavenging system efficiency is crucial for cell resistance to ROS mediated methylglyoxal injury. Free Radic Biol Med. 2003;35:856–71.

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article  CAS  PubMed  Google Scholar 

  • Baggetto LG, Lehninger AL. Isolated tumoral pyruvate dehydrogenase can synthesize acetone which inhibits pyruvate oxidation as well as other aldehydes. Biochem Biophys Res Commun. 1987;145:153–9.

    Article  CAS  PubMed  Google Scholar 

  • Basnayake J, Fukai S, Ouk M. Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. Proceedings of the Australian Agronomy Conference. Brisbane: Australian Society of Agronomy; 2006.

    Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell Proteom. 2007;6:1868–84.

    Article  CAS  Google Scholar 

  • Blomstedt CK, Gianello RD, Hamill JD, Neale AD, Gaff DF. Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regul. 1998;24:153–61.

    Article  CAS  Google Scholar 

  • Brambilla G, Sciaa L, Faggin P, Finollo R, Bassi AM, Ferro M, Marinari UM. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells. Carcinogenesis. 1985;6:683–6.

    Article  CAS  PubMed  Google Scholar 

  • Brown BE, Dean RT, Davies MJ. Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia. 2005;48:361–9.

    Article  CAS  PubMed  Google Scholar 

  • Campbell AK, Naseem R, Holland IB, Matthews SB, Wann KT. Methylglyoxal and other carbohydrate metabolites induce lanthanum-sensitive Ca2+ transients and inhibit growth in E. coli. Arch Biochem Biophys. 2007;468:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Casazza JP, Felver ME, Veech RL. The metabolism of acetone in rat. J Biol Chem. 1984;259:231–6.

    CAS  PubMed  Google Scholar 

  • Castillejo MA, Maldonado AM, Ogueta S, Jorrın JV. Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteom J. 2008;1:59–71.

    Article  CAS  Google Scholar 

  • Chaplen FWR. Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: A review. Cytotechnology. 1998;26:173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol. 2003;30:239–64.

    Article  CAS  Google Scholar 

  • Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics. 2010;11:630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dakin HD, Dudley HW. An enzyme concerned with the formation of hydroxyl acids from ketonic aldehydes. J Biol Chem. 1913;14:155–7.

    CAS  Google Scholar 

  • de Carvalho MHC. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav. 2008;3:156–65.

    Article  Google Scholar 

  • Deswal R, Chakravarty TN, Sopory SK. The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem Soc Trans. 1993;21:527–30.

    Article  CAS  PubMed  Google Scholar 

  • Du J, Suzuki H, Nagase F, Akhand AA, Ma XY, Yokoyama T, Miyata T, Nakashima I. Superoxide-mediated early oxidation and activation of ASK1 are important for initiating methylglyoxal-induced apoptosis process. Free Radic Biol Med. 2001;31:469–78.

    Article  CAS  PubMed  Google Scholar 

  • Dutra F, Knudsen FS, Curi D, Bechara EJ. Aerobic oxidation of aminoacetone, a threonine catabolite: Iron catalysis and coupled iron release from ferritin. Chem Res Toxicol. 2001;14:1323–9.

    Article  CAS  PubMed  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma. 2010;245:85–96.

    Article  CAS  PubMed  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM. Molecular characterization of glyoxalase-I from a higher plant: upregulation by stress. Plant Mol Biol. 1995;29:1223–33.

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH, Dianzani MU, Poli G, Slater TF. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J. 1982;208:129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212.

    Article  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM. Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci. 2011;30:491–507.

    Article  Google Scholar 

  • Ferguson GP, Tötemeyer V, MacLean MJ, Booth IR. Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol. 1998;170:209–19.

    Google Scholar 

  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol. 2005;168(1):17–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J. 2014;80(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  • Gomes RA, Vicente Miranda H, Silva MS, Graca G, Coelho AV, Ferreira AE, Cordeiro C, Freire AP. Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins. FEBS J. 2006;273:5273–87.

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH. Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res. 2007;6:1451–60.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res. 2011;143:1758–76.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M. Selenium induced upregulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res. 2011;143:1704–21.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M. Plant Responses and tolerance to abiotic oxidative stress: Antioxidant defenses is a key factors. In: Bandi V, Shanker AK, Shanker C, Mandapaka M, editors. Crop stress and its management: Perspectives and strategies. Berlin: Springer; 2012. p. 261–316.

    Chapter  Google Scholar 

  • Hasegawa R, Ogiso T, Imaida K, Shirai T, Ito N. Analysis of the potential carcinogenicity of coffee and its related compounds in a medium-term liver bioassay of rats. Food Chem Toxicol. 1995;33:15–20.

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Nagy T, Oberschall A, Dudits D, Vass I. Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280-320) stresses. Plant Cell Environ. 2003;26:513–22.

    Article  CAS  Google Scholar 

  • Hoque MA, Banu MN, Nakamura Y, Shimoishi Y, Murata Y. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl induced damage in cultured tobacco cells. J Plant Physiol. 2007;165:813–24.

    Article  PubMed  CAS  Google Scholar 

  • Hoque MA, Uraji M, Banu MNA, Mori IC, Nakamura Y, Murata Y. The effect of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem. 2010;74:2124–6.

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, Murata Y. Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol. 2012a;169:979–86.

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T, Hoque MA, Nakamura Y, Murata Y. Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem. 2012b;76:617–9.

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Tuya A, Nakamura Y, Murata Y. Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol. 2012c;14:854–8.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M. Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants. 2010;16:19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MD, Rohman MM, Fujita M. Comparative investigation of glutathione S-transferases, glyoxalase I and allinase activities in different vegetable crops. J Crop Sci Biotechnol. 2007;10:21–8.

    Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M. Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci. 2009;3:53–64.

    CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front Agric China. 2011a;1:1–14.

    Article  Google Scholar 

  • Hossain MA, Teixeira da Silva JA, Fujita M. Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: An intimate relationship. In: Shanker AK, Venkateswarlu B, editors. Abiotic Stress/Book 1. Croatia: INTECH-Open Access; 2011b. p. 235–66.

    Google Scholar 

  • Hossain MA, Mostofa MG, Fujita M. Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed. 2013a;4:50–70.

    Google Scholar 

  • Hossain MA, Mostofa MG, Fujita M. Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J Plant Sci Mol Breed. 2013b;2:2.

    Article  CAS  Google Scholar 

  • Hossain MA, Mostofa MG, Burritt DJ, Fujita M. Modulation of reactive oxygen species and methylglyoxal detoxification systems by exogenous glycinebetaine and proline improves drought tolerance in mustard (Brassica juncea L.). Int J Plant Biol Res. 2014;2(2):1014.

    Google Scholar 

  • Jain M, Choudhary D, Kale RK, Bhalla-Sarin N. Salt and glyphosphate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant. 2002;114:499–505.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Halsall HB, Heinemen WR. Redox activation of galactose oxidase: thin-layer electrochemical study. Biochemistry. 1985;24:1579–85.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP. Methylglyoxal toxicity in mammals. Toxicol Lett. 1994;73:3–24.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett. 1999;110:145–75.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP. The tandem of free radicals and methylglyoxal. Chem Biol Interact. 2008;171(3):251–71.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP, Garzó T, Antoni F, Mandl J. Accumulation of S-D-lactoylglutathione and transient decrease of glutathione level caused by methylglyoxal load in isolated hepatocytes. Biochim Biophys Acta. 1992;1135:159–64.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP, Littauer A, de Groot H. Has reactive oxygen a role in methylglyoxal toxicity? A study on cultured rat hepatocytes. Arch Toxicol. 1993;67:369–72.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Edwards LG, Thornalley PJ. Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA, G1 growth arrest and induction of apoptosis. Leuk Res. 1996;5:397–405.

    Article  Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W. 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem. 2011;49:168–77.

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Vishnoi A, Ariyadasa TU, Bhattacharya A, Singla-Pareek SL, Sopory SK. Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci Rep. 2013;3:3076.

    PubMed  PubMed Central  Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL. Glyoxalases and stress tolerance in plants. Biochem Soc Trans. 2014a;42(2):485–90.

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Mustafiz A, Sarkar A, Ariyadasa TU, Singla-Pareek SL, Sopory SK. Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol Plant. 2014b;152(1):1–16. doi:10.1111/ppl.12147.

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Kushwaha HR, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Front Plant Sci. 2015;6:682.

    PubMed  PubMed Central  Google Scholar 

  • Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169:2195–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Mahé A, Brangeon J, Prioul JL. A maize vacuolur invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol. 2000;124:71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kon H, Szent-Györgyi A. Charge transfer between amine and carbonyl. Proc Natl Acad Sci U S A. 1973;70:3139–40.

    Google Scholar 

  • Koop DR, Casazza JP. Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem. 1985;260:13607–12.

    CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kun K. Inhibition of succinic dehydrogenase by methylglyoxal. J Biol Chem. 1950;187:289–97.

    CAS  PubMed  Google Scholar 

  • IPCC. Kundzewicz ZW, Palutikof J, Wu S, editors. Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Lil ZK. Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot. 2007;58:169–75.

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS, Pons TL. Plant physiological ecology. 2nd ed. New York: Springer; 2008.

    Book  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One. 2012;7, e49522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoncini G, Maresca M, Bonsignore A. The effect of methylglyoxal on the glycolytic enzymes. FEBS Lett. 1980;117:17–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu HS, Li FM. Root respiration, photosynthesis and grain yield of two spring wheat in response to soil drying. Plant Growth Regul. 2005;46:233–40.

    Article  CAS  Google Scholar 

  • Ludlow MM, Muchow RC. A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron. 1990;43:107–53.

    Article  Google Scholar 

  • Lyles GA, Chalmers J. The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol. 1992;43:1409–14.

    Article  CAS  PubMed  Google Scholar 

  • Maeta K, Izawa S, Inoue Y. Methylglyoxal, a metabolite derived from glycolysis, functions as signal initiator of the high osomolarity glycerol-miotgen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Sacchromyces cerevisiae. J Biol Chem. 2005;280:253–60.

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LS. Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009;50:1260–76.

    Article  CAS  PubMed  Google Scholar 

  • Mansfield TJ, Atkinson CJ. Stomatal behaviour in water stressed plants. In: Alscher RG, Cumming JR, editors. Stress responses in plants: adaptation and acclimation mechanisms. New York: Wiley-Liss; 1990. p. 241–64.

    Google Scholar 

  • Maroco JP, Pereira JS, Chaves MM. Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Aust J Plant Physiol. 1997;24:381–7.

    Article  Google Scholar 

  • Martins AMTBS, Cordeiro CAA, Freire AMJP. In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett. 2001;499:41–4.

    Article  CAS  PubMed  Google Scholar 

  • Mazahery-Laghab H, Nouri F, Abianeh HZ. Effects of the reduction of drought stress using supplementary irrigation for sunflower (Helianthus annuus) in dry farming conditions. Pajouheshva-Sazandegi Agron Hort. 2003;59:81–6.

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.

    Article  CAS  PubMed  Google Scholar 

  • Mira ML, Martinho F, Azevedo MS, Manso CF. Oxidative inhibition of red blood cell ATPases by glyceraldehyde. Biochim Biophys Acta. 1991;1060:257–61.

    Article  CAS  PubMed  Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO. Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci. 2006;46:180–91.

    Article  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 2007;143:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics. 2011;11(2):293–305.

    Article  CAS  PubMed  Google Scholar 

  • Nam NH, Chauhan YS, Johansen C. Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agric Sci. 2001;136:179–89.

    Article  Google Scholar 

  • Nayyar H, Kaur S, Singh S, Upadhyaya HD. Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield. J Sci Food Agr. 2006;86:2076–82.

    Article  CAS  Google Scholar 

  • Neuberg C. The destruction of lactic aldehyde and methylglyoxal by animal organs. Biochem J. 1913;49:502–6.

    CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol. 2009;150(3):1368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol. Cell Proteom. 2008;7:88–107.

    Article  CAS  Google Scholar 

  • Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res. 2010;9:3443–64.

    Article  CAS  PubMed  Google Scholar 

  • Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell. 2008;20(10):2876–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peuke AD, Rennenberg H. Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees. 2004;18:639–48.

    Article  CAS  Google Scholar 

  • Phillips SA, Thornalley PJ. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem. 1993;212:101–5.

    Article  CAS  PubMed  Google Scholar 

  • Racker E. The mechanism of action of glyoxalase. J Biol Chem. 1951;190:685–96.

    CAS  PubMed  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 2006;29(12):2143–52.

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Dutta S, Halder J, Ray M. Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J. 1994;303:69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161:1189–202.

    Article  CAS  Google Scholar 

  • Richard JP. Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans. 1993;21:549–53.

    Article  CAS  PubMed  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Singla-Pareek SL. Taming drought stress in rice through genetic engineering of transcription factors and protein kinases. Plant Stress. 2013;7(1):60–72.

    Google Scholar 

  • Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C. Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O(2) at photosystem I: a symptom of plant diabetes. Plant Cell Environ. 2011;34:1454–64.

    Article  CAS  PubMed  Google Scholar 

  • Samarah NH. Effects of drought stress on growth and yield of barley. Agron Sustain Dev. 2005;25:145–9.

    Article  Google Scholar 

  • Samarah NH, Mullen RE, Cianzio SR, Scott P. Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Sci. 2006;46:2141–50.

    Article  CAS  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hiraj MY, Noji M, Saito K, Masuda T, Takamiya KI, Shibata D, Ohta H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005;44:563–668.

    Article  CAS  Google Scholar 

  • Saxena M, Bisht R, Roy DS, Sopory SK, Bhalla-Sarinn M. Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn and ABA. Biochem Biophys Res Commun. 2005;336:813–9.

    Article  CAS  PubMed  Google Scholar 

  • Sen CK. Nutritional biochemistry of cellular glutathione. Nutr Biochem. 1997;8:660–72.

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 2005;46(3):209–21.

    Article  CAS  Google Scholar 

  • Sharma S, Mustafiz A, Singla-Pareek SL, Shankar Srivastava P, Sopory SK. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signal Behav. 2012;7:1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique MRB, Hamid A, Islam MS. Drought stress effects on water relations of wheat. Bot Bull Acad Sin. 2001;41:35–9.

    Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A. 2003;100:14672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993;125:27–58.

    Article  CAS  Google Scholar 

  • Sousa Silva M, Gomes RA, Ferreira AE, Ponces Freire A, Cordeiro C. The glyoxalase pathway: the first hundred years… beyond. Biochem J. 2013;453(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  • Sugimura T, Sato S. Mutagens–carcinogens in foods. Cancer Res. 1983;43:2415–21.

    CAS  Google Scholar 

  • Szent-Györgyi A. Bioelectronics. New York: Academic; 1968.

    Google Scholar 

  • Takatsume Y, Izawa S, Inoue Y. Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. J Biol Chem. 2006;281:9086–92.

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ. The glyoxalase system in health and disease. Mol Asp Med. 1993;14:287–371.

    Article  CAS  Google Scholar 

  • Thornalley PJ. Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans. 2003a;31:1372–7.

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ. Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans. 2003b;31:1343–8.

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16:2481–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze D. The role of active oxygen species in plant signal transduction. Plant Sci. 2001;161:405–14.

    Article  Google Scholar 

  • Vander Jagt DL, Hunsaker LA, Vander Jagt TJ, Gomez MS, Gonzales DM, Deck LM, Royer RE. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem Pharmacol. 1997;53:1133–40.

    Article  CAS  PubMed  Google Scholar 

  • Veena RVS, Sopory SK. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J. 1999;17:385–95.

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Rasul E. Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M, editor. Handbook of photosynthesis. 2nd ed. Boca Raton: CRC Press; 2005. p. 479–97.

    Google Scholar 

  • Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ. The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J. 2009;58(2):299–317.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Juurlink BH. Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension. 2002;39(3):809–14.

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun. 2005;337:61–7.

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Kumar M, Pareek A, Saxena M, Sarin NB, Sopory SK. Characterization and functional validation of glyoxalase II from rice. Protein Expr Purif. 2007;51(1):126–32.

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Sopory SK. An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact. 2008;23(1-2):51–68.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Transcription regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.

    Article  CAS  PubMed  Google Scholar 

  • Yu PH, Wright S, Fan EH, Lun DZR, Gubisne-Harberle D. Physiological and pathological implications of semicarbazide sensitive amine oxidase. Biochim Biophys Acta. 2003;1647:193–9.

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Komatsu S. A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry. 2007;68:426–37.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001;6(2):66e71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh Lata Singla-Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hasan, M.R., Ghosh, A., Kaur, C., Pareek, A., Singla-Pareek, S.L. (2016). Glyoxalase Pathway and Drought Stress Tolerance in Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_16

Download citation

Publish with us

Policies and ethics