Skip to main content

Effects of Elevated Carbon Dioxide and Drought Stress on Agricultural Crops

  • Chapter
  • First Online:
Book cover Drought Stress Tolerance in Plants, Vol 1
  • 3540 Accesses

Abstract

An increase in atmospheric CO2 concentration has been expected and intensification of drought in some regions has been projected for the future. The impacts of elevated CO2 and drought stress on various crops have been studied extensively at many different regions. The purpose of this review is to provide an overview of the growth and development of agricultural crops under elevated CO2 and drought stress based on field experiments and crop modeling studies. This review suggests that the drought stress on crop could be more serious during some phenological stages such as flowering periods. The rising CO2 concentration contributes an increase in CO2 diffusive transfer and photosynthetic rates. Consequently the elevated CO2 decreases transpiration and improves crop water use efficiency and yield. In general, elevated CO2 contributes to increases in crop growth and frequent yield. Crops with a C3 pathway usually exhibit greater growth responses compared to those with a C4 pathway. Elevated CO2 improves plant–water relations by reducing transpiration and increasing water use efficiency, implying less water use. In contrast, drought stress reduces leaf area, plant height, growth, and development leading to smaller organs and decreases in yields, and subsequently, less water use efficiency. We expect that this review can provide a better understanding of the interactive effects of elevated CO2 and drought stress on crop growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate PE, Dardanellib JL, Cantareroc MG, Maturanoc M, Melchiorid RJM, Sueroa EE. Climatic and water availability effects on water-use efficiency in wheat. Crop Sci. 2004;44:474–83.

    Article  Google Scholar 

  • Acevedo E, Hsiao TC, Henderson DW. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 1971;48:631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo E, Harris H, Cooper PJM. Crop architecture and water use efficiency in Mediterranean environments. In: Harris H, Cooper PJM, Pala M, editors. Soil and crop management for improved water use efficiency in rainfed areas. Ankara: ICARDA; 1991. p. 106–18.

    Google Scholar 

  • Acevedo E, Silva P, Silva H. Wheat growth and physiology. In: Curtis BC, Rajaram S, Gómez Macpherson H, editors. Bread wheat improvement and production. Rome: FAO plant production and protection series; 2002. p. 567.

    Google Scholar 

  • Acock B, Allen Jr LH. Crop responses to elevated carbon dioxide concentrations. In: Strain BR, Cure JD, editors. Direct effects of increasing carbon dioxide on vegetation. Washington, DC: DOE/ER-0238, Office of Energy Research, U.S. Dept. of Energy; 1985. p. 317–46.

    Google Scholar 

  • Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analysis of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165:351–72.

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 2007;30:258–70.

    Article  CAS  PubMed  Google Scholar 

  • Allen Jr LH. Effects of increasing carbon dioxide levels and climate change on plant growth, evapotranspiration, and water resources. Proceedings of a colloquium on managing water resources in the west under conditions of climatic uncertainty. Washington, DC: National Research Council, National Academy Press; 1991. p. 101–47.

    Google Scholar 

  • Allen LH. Carbon dioxide increase: direct impact on crops and indirect effects mediated through anticipated climatic changes. In: Boote KJ, Sinclair TR, Bennett JM, editors. Physiology and determination of crop yield. Madison, WI: ASA, CSSA, SSSA; 1994. p. 425–59.

    Google Scholar 

  • Allen Jr LH, Valle RR, Mishoe JW, Jones JW. Soybean leaf gas-exchange responses to carbon dioxide and water stress. Agron J. 1994;86:625–36.

    Article  Google Scholar 

  • Allen Jr LH, Valle RR, Jones JW, Jones PH. Soybean leaf water potential responses to carbon dioxide and drought. Agron J. 1998;90:375–83.

    Article  Google Scholar 

  • Amthor JS. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle. Glob Chang Biol. 1995;1:243–74.

    Article  Google Scholar 

  • Amthor JS. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crop Res. 2001;73:1–34.

    Article  Google Scholar 

  • Andresen JA, Dale RF, Fletcher JJ, Preckel PV. Prediction of county-level corn yields using an energy-crop growth index. J Climate. 1989;2:48–56.

    Article  Google Scholar 

  • Arp WJ. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991;14:869–75.

    Article  CAS  Google Scholar 

  • Asseng S, Jamieson PD, Kimball BA, Pinter Jr PJ, Sayred K, Bowden JW, Howden SM. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res. 2004;85:85–102.

    Article  Google Scholar 

  • Baker JY, Allen Jr LH, Boote KJ. Growth and yield responses of rice to carbon dioxide concentration. J Agric Sci. 1990;115:313–20.

    Article  CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J, editor. Progress in photosynthesis research. Dordrecht: Martinus-Nijhoff; 1987. p. 221–4.

    Chapter  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP, editors. Climate change and water. Technical paper of the intergovernmental panel on climate change. Geneva: IPCC Secretariat; 2008.

    Google Scholar 

  • Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR. Effects of CO2 and temperature on growth and yield of crops of winter wheat over several seasons. Eur J Agron. 1997;7:43–52.

    Article  Google Scholar 

  • Bazzaz FA. The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst. 1990;21:167–96.

    Article  Google Scholar 

  • Boote KJ, Pickering NB. Modeling photosynthesis of row crop canopies. Hort. Science 1994;29:1423–1434.

    Google Scholar 

  • Cen Y-P, Sage RF. The regulation of rubisco activity in response to variation in temperature and atmospheric CO+ partial pressure in sweet potato. Plant Physiol. 2005;139:979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri UN, Burnett RB, Kirkham MB, Kanemasu ET. Effect of carbon dioxide on sorghum yield, root growth, and water use. Agr For Meteorol. 1986;37:109–22.

    Article  Google Scholar 

  • Chaudhuri UN, Kirkham MB, Kanemasu ET. Carbon dioxide and wheat level effects on yield and water use of winter wheat. Agron J. 1990;82:637–41.

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiotti QP, Johnston T. Extending the boundaries of climate change research: a discussion on agriculture. J Rural Stud. 1995;11:335–50.

    Article  Google Scholar 

  • Chipanshi AC, Ripley EA, Lawford RG. Large-scale simulation of wheat yield in semi-arid environments using a crop-growth model. Agric Syst. 1999;59:57–66.

    Article  Google Scholar 

  • Chun JA, Wang Q, Timlin D, Fleisher D, Reddy VR. Effect of elevated carbon dioxide and water stress on Gas exchange and water Use efficiency in corn. Agric For Meteorol. 2011;151:378–84.

    Article  Google Scholar 

  • DeLucia EH, Heckathorn SA. The effect of soil drought on water-use efficiency in a contrasting Great Basin desert and Sierran montane species. Plant Cell Environ. 1989;12:935–40.

    Article  Google Scholar 

  • Dugas WA, Prior SA, Rogers HH. Transpiration from sorghum and soybean growing under ambient and elevated CO2 conditions. Agric For Meteorol. 1997;83:37–48.

    Google Scholar 

  • Egilla JN, Davies Jr FT, Boutton TW. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica. 2005;43:135–40.

    Article  CAS  Google Scholar 

  • Eitzinger J, Å tastná M, Žalud Z, Dubrovský M. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agric Water Manage. 2003;61:195–217.

    Article  Google Scholar 

  • Ellsworth DS. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ. 1999;22:461–72.

    Article  Google Scholar 

  • Evans TE. The effects of changes in the world hydrological cycle on availability of water resources. In: Bazzaz F, Sombroek W, editors. Global climate change and agricultural production. Chichester: Wiley; 1996. p. 248.

    Google Scholar 

  • Ewert F, Rodriguez D, Jamieson P, Semenov MA, Mitchell RAC, Goudriaan J, Porter JR, Kimball BA, Pinter Jr PJ, Manderscheid R, Weigel HJ, Fangmeier A, Fereres E, Villalobos F. Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agric Ecosyst Environ. 2002;93:249–66.

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980;149:78–90.

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA. Influence of water stress on crop yield in semi arid regions. In: Turner NC, Kramer P, editors. Adaptation of plants to water and high temperature stress. New York: Willey; 1980. p. 323–40.

    Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004;6:269–79.

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 2007;30:1284–98.

    Article  CAS  PubMed  Google Scholar 

  • Freschi L, Mercier H. Connecting environmental stimuli and crassulacean acid metabolism expression: phytohormones and other signaling molecules. Prog Bot. 2012;73:231–55.

    Article  CAS  Google Scholar 

  • Gamo M. Classification of arid regions by climate and vegetation. J Arid Land Stud. 1999;1:9–17.

    Google Scholar 

  • García del Moral LF, Rharrabti Y, Villegas D, Royo C. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: an ontogenic approach. Agron J. 2003;95:266–74.

    Article  Google Scholar 

  • Ghannoum O, von Caemmerer S, Ziska LH, Conroy JP. The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ. 2000;23:931–42.

    Article  CAS  Google Scholar 

  • Gifford RM. Growth and yield of CO2 enriched wheat under water-limited conditions. Aust J Plant Physiol. 1979;6:367–78.

    Article  Google Scholar 

  • Gunasekera D, Berkowitz GA. Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. Plant Physiol. 1993;103:629–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrick JD, Maherali H, Thomas RB. Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol. 2004;162:387–96.

    Article  Google Scholar 

  • Hochman ZVI. Effect of water stress with phasic development on yield of wheat grown in a semi-arid environment. Field Crop Res. 1982;5:55–67.

    Article  Google Scholar 

  • Horie T, Baker JT, Nakagawa H, Matsui T, Kim HY. Crop ecosystem responses to climatic change: rice. In: Reddy KR, Hodges HF, editors. Climate change and global crop productivity. New York: CAB International; 2000. p. 81–106.

    Chapter  Google Scholar 

  • Hu Q, Buyanovsky G. Climate effects on corn yield in Missouri. J Appl Meteorol. 2003;42:1626–35.

    Article  Google Scholar 

  • Hunsaker DJ, Kimball BA, Pinter Jr PJ, LaMorte RL, Wall GW. Effects of CO2 enrichment and irrigation on soil water balance evapotranspiration of wheat grown under open-air field conditions. Trans ASAE. 1996;4:1345–55.

    Article  Google Scholar 

  • Hunsaker DJ, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Adamsen FJ, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ. CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agric For Meteorol. 2000;104:85–105.

    Article  Google Scholar 

  • Jones P, Allen Jr LH, Jones JW, Valle R. Photosynthesis and transpiration responses of soybean canopies to short- and long-term CO2 treatments. Agron J. 1985;77:119–26.

    Article  CAS  Google Scholar 

  • Kartschall T, Grossman S, Pinter Jr PJ, Garcia RL, Kimball BA, Wall GW, Hunsaker DJ, LaMorte RL. A simulation of phenology, growth, carbon dioxide exchange and yields under ambient atmosphere and free-air carbon dioxide enrichment (FACE) Maricopa, Arizona, for wheat. J Biogeogr. 1995;22:2467–77.

    Article  Google Scholar 

  • Katerji N, Campi P, Mastrorilli M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric Water Manage. 2013;130:14–26.

    Article  Google Scholar 

  • Keeling CD, Whorf TP. Trends: A compendium of data on global change, Atmospheric CO2 records from sites in the SIO air sampling network. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Dept. Energy; 2001. p. 14–21.

    Google Scholar 

  • Kimball BA. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J. 1983;75:779–88.

    Article  Google Scholar 

  • Kimball BA. The effects of free-air CO2 enrichment of cotton, wheat and sorghum. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H, editors. Managed ecosystems and CO2, Case studies, processes and perspectives. Heidelberg: Springer; 2006. p. 47–70.

    Google Scholar 

  • Kimball BA, Idso SB. Increasing atmospheric CO2: effects on crop yield, water use, and climate. Agric Water Manage. 1983;7:55–72.

    Article  Google Scholar 

  • Kohler B, Blatt MR. Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J. 2002;32:185–94.

    Article  PubMed  Google Scholar 

  • Kramer PJ. Carbon dioxide concentration, photosynthesis and dry matter production. BioScience. 1981;31:29–33.

    Article  CAS  Google Scholar 

  • Kruijt B, Witte J-PM, Jacos CMJ, Kroon T. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. J Hydrol. 2008;349:257–67.

    Article  Google Scholar 

  • Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002;25:275–94.

    Article  CAS  PubMed  Google Scholar 

  • Lazaridou M, Kirilov A, Noitsakis B, Todorov N, Katerov I. The effect of water deficit on yield and water use efficiency of lucerne. Optimal forage systems for animal production and the environment. Proceedings of the 12th Symposium of the European Grassland Federation, Pleven, Bulgaria; 2003. 26–28 May 2003.

    Google Scholar 

  • Lazaridou M, Koutroubas SD. Drought effect on water use efficiency of berseem clover at various growth stages. New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress Brisbane, Australia; 2004. 26 Sept–1 Oct 2004.

    Google Scholar 

  • Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP. Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future CO2 rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Glob Chang Biol. 2004;10:951–62.

    Article  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Ort DR, Long SP. Long-term growth of soybean at elevated CO2 does not cause acclimation of stomatal conductance under fully open-air conditions. Plant Cell Environ. 2006a;29:1794–800.

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naide SL, Rogers A, Ort DR, Long SP. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 2006b;55:591–628.

    Google Scholar 

  • Levy PE, Cannel MGR, Friend AD. Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob Environ Change. 2004;14:21–30.

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR. Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol. 2004;55:591–628.

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science. 2006;312:1918–21.

    Article  CAS  PubMed  Google Scholar 

  • Loomis RS, Amthor JS. Limits of yield revisited. In: Reynolds MP, Rajaram S, McNab A, editors. Increasing yield potential in wheat: breaking the barriers DF. Mexico: CIMMYT; 1996. p. 76–89.

    Google Scholar 

  • Loomis RS, Lafitte HR. The carbon economy of a maize crop exposed to elevated CO2 concentrations and water stress, as determined from elemental analyses. Field Crop Res. 1987;17:63–74.

    Article  Google Scholar 

  • Makino A, Mae T. Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol. 1999;40:999–1006.

    Article  CAS  Google Scholar 

  • Maroco JP, Edwards GE, Ku MSB. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta. 1999;210:115–25.

    Article  CAS  PubMed  Google Scholar 

  • Marques da Silva J, Arrabica MC. Effect of water stress on Rubisco activity of Setaria sphacelota. In: Mathis P, editor. Photosynthesis: from light to biosphere, vol. 4. Dordrecht: Kluwer; 1995. p. 545–8.

    Google Scholar 

  • Medici LO, Azevedo RA, Canellas LP, et al. Stomatal conductance of maize under water and nitrogen deficits. Pesq Agrop Brasileira. 2007;42:599–601.

    Article  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 2001;149:247–64.

    Article  Google Scholar 

  • Medrano H, Parry MAJ, Socias X, Lawlor DW. Longterm water stress inactivates rubisco in subterranean clover. Ann Appl Biol. 1997;131:491–501.

    Article  CAS  Google Scholar 

  • Meyer WS, Green GC. Water use by wheat and plant indicators of available soil water. Agron J. 1980;72:253–7.

    Article  Google Scholar 

  • Meyer WS, Green GC. Plant indicators of wheat and soybean crop water stress. Irrig Sci. 1981;2:167–76.

    Article  Google Scholar 

  • Morgan JA, Pataki DE, Körner C, et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia. 2004;140:11–25.

    Article  CAS  PubMed  Google Scholar 

  • Morison JIL. Response of plants to CO2 under water limited conditions. Vegetatio. 1993;104(105):193–209.

    Article  Google Scholar 

  • Mumm P, Wolf T, Fromm J, et al. Cell type-specific regulation of ion channels within the maize stomatal complex. Plant Cell Physiol. 2011;52:1365–75.

    Article  CAS  PubMed  Google Scholar 

  • Nerd A, Nobel PS. Effects of drought on water relations and nonstructural carbohydrates in cladodes of Opuntia ficus-indica. Physiol Plant. 1991;81:495–500.

    Article  CAS  Google Scholar 

  • Nesmith DS, Ritchie JT. Effects of soil water deficits during tassel emergence on development and yield component of maize (Zea mays L.). Field Crop Res. 1992;28:251–6.

    Article  Google Scholar 

  • Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ. 2013;36:655–69.

    Article  CAS  PubMed  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ. 1999;22:683–714.

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–93.

    Article  CAS  PubMed  Google Scholar 

  • Penning de Vries FWT, Keulen van H, Rabbinge R. Natural resources and the limits of food production. In: Bouma J et al., editors. Ecoregional approaches for sustainable land use and food production. Dordrecht: Kluwer Academic Press; 1995.

    Google Scholar 

  • Poorter H. Do slow-growing species and nutrient-stressed plants respond relatively strongly to elevated CO2? Glob Chang Biol. 1998;4:693–7.

    Article  Google Scholar 

  • Prior SA, Rogers HH, Sionit N, Patterson RP. Effects of elevated atmospheric CO2, on water relations of soya bean. Agr Ecosyst Environ. 1991;35:13–25.

    Article  CAS  Google Scholar 

  • Prior SA, Runion GB, Rogers HH, Arriaga FJ. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems. J Environ Qual. 2010;39:596–608.

    Article  CAS  PubMed  Google Scholar 

  • Radmer R, Kok B. Photosynthesis: limited yields, unlimited dreams. BioScience. 1977;27:599–605.

    Article  Google Scholar 

  • Reddy KR, Hodeges HF, Kimball BA. Crop ecosystem response to climatic change: cotton. In: Reddy KR, Hodges HF, editors. Climate change and global crop productivity. New York: CABI; 2000. p. 161–87.

    Chapter  Google Scholar 

  • Riedo M, Gyalistras D, Fuhrer J. Pasture responses to elevated temperature and doubled CO2 concentration: assessing the spatial pattern across an alpine landscape. Clim Res. 2001;17:19–31.

    Article  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV, Prior SA. In: Allen Jr LH, Kirkham MB, Olszyk DM, Whitman CE, editors. Advances in carbon dioxide effects research, Plant responses to atmospheric CO2 enrichment: Implications in root-soil-microbe interactions. Madison, WI: ASA Special Publication No. 61. ASA, CSSA, and SSSA; 1997. p. 1–34.

    Google Scholar 

  • Rosenzweig C, Hillel D. Climate change and the global harvest. New York: Oxford University Press; 1998. p. 324.

    Google Scholar 

  • Sadras VO, Angus JF. Benchmarking water use efficiency of rainfed wheat in dry environments. Aust J Agr Res. 2006;57:847–56.

    Article  Google Scholar 

  • Sage RF, Monson RK. C4 plat biology. San Diego: Academic; 1999.

    Google Scholar 

  • Samarakoon AB, Müller WJ, Gifford RM. Transpiration and leaf area under elevated CO2: effects of soil water status and genotype in wheat. Aust J Plant Physiol. 1995;22:33–44.

    Article  Google Scholar 

  • Sau F, Mínguez MI. Adaptation of indeterminate faba beans to weather and management under a Mediterranean climate. Field Crop Res. 2000;66:81–99.

    Article  Google Scholar 

  • Schneider SH. What is ‘dangerous’ climate change. Nature. 2001;411:17–9.

    Article  CAS  PubMed  Google Scholar 

  • Shpiler L, Blum A. Heat tolerance to yield and its components in different wheat cultivars. Euphytica. 1991;51:257–263.

    Google Scholar 

  • Siddique MRB, Hamid A, Islam MS. Drought stress effects on water relations of wheat. Bot Bull Acad Sin. 2001;41:35–9.

    Google Scholar 

  • Simane B, Peacock JM, Struik PC. Differences in development and growth rate among drought-resistant and susceptible cultivars of durum wheat (Triticum turgidum L. var. durum). Plant Soil. 1993;157:155–166.

    Google Scholar 

  • Sionit N, Strain BR, Hellmers H, Kramer PJ. Effects of atmospheric CO2 concentrations and water stress on water relations of wheat. Bot Gaz. 1981;142:191–6.

    Article  Google Scholar 

  • Sionit N, Rogers HH, Bingham GE, Strain BR. Photosynthesis and stomatal conductance with CO2-enrichment of container- and field-grown soybeans. Agron J. 1984;76:447–51.

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR. Nowak RS, Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature. 2000;408;79–81.

    Google Scholar 

  • Somerville C, Briscoe J. Genetic engineering and water. Science. 2001;292:2217.

    Article  CAS  PubMed  Google Scholar 

  • Surano KA, Shinn JH. CO2 and water stress effects on yield, water-use efficiency and photosynthate partitioning in field grown corn. UCRL-90771. Livermore: Lawrence Livermore National Laboratory; 1984.

    Google Scholar 

  • Timlin D, Bunce J, Fleisher D, et al. Simulation of the effects of limited water on photosynthesis and transpiration in field crops: can we advance our modeling approaches? In: Ahuja L et al., editors. Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. Madison, WI: Advances in Agricultural Systems Modeling Ser. 1. ASA, CSSA, SSSA; 2008.

    Google Scholar 

  • Tubiello FN, Ewert F. Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron. 2002;18:57–74.

    Article  Google Scholar 

  • Tubiello FN, Rosenzweig C, Kimball BA, Pinter Jr PJ, Wall GW, Hunsaker DJ, Lamorte RL, Garcia RL. Testing CERES-wheat with FACE data: CO2 and water interactions. Agron J. 1999;91:1856–65.

    Article  Google Scholar 

  • Tubiello FN, Donatelli M, Rosenzweig C, Stockle CO. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron. 2000;13:179–89.

    Article  Google Scholar 

  • Tubiello FN, Amthor JA, Boote K, Donatelli M, Easterling WE, Fisher G, Gifford R, Howden M, Reilly J, Rosenzweig C. Crop response to elevated CO2 and world food supply. Eur J Agron. 2007;26:215–23.

    Article  CAS  Google Scholar 

  • van Herwaarden AF, Farquhar GD, Angus JF, Richards RA, Howe GN. ‘Haying-off ’, the negative grain yield response of dryland wheat to nitrogen fertilizer. I.Biomass, grain yield, and water use. Aust. J. Agr. Res. 1998;49:1067–1082.

    Google Scholar 

  • von Caemmerer S, Quick PW. Rubisco, physiology in vivo. In: Leegood RC, Sharkey TD, von Caemmerer S, editors. In photosynthesis: physiology and metabolism. Dordrecht: Kluwer Academic; 2000. p. 85–113.

    Chapter  Google Scholar 

  • Wang W-H, Yi X-Q, Han A-D, et al. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot. 2012;63:177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren CR. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J Exp Bot. 2008;59:327–34.

    Article  CAS  PubMed  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH. Climate Change 1995: Impacts, Adaptation and Mitigation of Climate Change. Cambridge University Press, Cambridge; 1996.

    Google Scholar 

  • Witter SH. Future technological advances in agriculture and their impact on the regulatory environment. BioScience. 1979;29:603–10.

    Article  Google Scholar 

  • Wu DX Wang GX. Interaction of CO2 enrichment and drought on growth, water use, and yield of broad bean (Vicia faba). Environ. Exp. Bot. 2000;43:131–139.

    Google Scholar 

  • Wu DX, Wang GX, Bai YF, Liao JX. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agr. Ecosyst. Environ. 2004;104:493–507.

    Google Scholar 

  • Yang Y, Timlin DJ, Fleisher DH, Kim S-H, Quebedeaux B, Reddy VR. Simulating leaf area of corn plants at contrasting water status. Agric For Meteorol. 2009;149:1161–7.

    Article  Google Scholar 

  • Yoshimoto M, Oue H, Kobayashi K. Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agric. Forest Meteorol. 2005;133;226–246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Ahn Chun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chun, J.A., Li, S., Wang, Q. (2016). Effects of Elevated Carbon Dioxide and Drought Stress on Agricultural Crops. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_10

Download citation

Publish with us

Policies and ethics