Skip to main content

Hearing in Drosophila

  • Chapter
  • First Online:
Book cover Insect Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 55))

Abstract

Since the first analysis of the Drosophila courtship song in the early 1960s, the molecular and neural mechanisms underlying acoustic communication in fruit flies have attracted the interest of many researchers studying behavioral evolution, neuroethology, sensory systems, motor pattern control, acoustic information processing, and decision making in the brain. Recent studies utilizing a wide array of genetic tools have provided novel insights into the mechanisms of acoustic communication in Drosophila, from genes and cells to neural circuits and behaviors. Drosophila, in addition to the conventional model animals such as other singing insects, mammals, and birds, thus serves as an excellent model system for analyzing the neuronal and molecular mechanisms that are essential for information processing of acoustic signals. This chapter provides an overview of our current knowledge on hearing in Drosophila with an introduction to their acoustic communication, the hearing organs, and cells involved in the function and development of the auditory system and the auditory neural circuits in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, J. T., Nadrowski, B., Kamikouchi, A., & Göpfert, M. C. (2006). Mechanical tracing of protein function in the Drosophila ear. Protocol Exchange. doi:10.1038/nprot.2006.364.

    Google Scholar 

  • Albert, J. T., Nadrowski, B., & Göpfert, M. C. (2007). Mechanical signatures of transducer gating in the Drosophila ear. Current Biology, 17(11), 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  • Allen, M. J., Godenschwege, T. A., Tanouye, M. A., & Phelan, P. (2006). Making an escape: Development and function of the Drosophila giant fibre system. Seminars in Cell & Developmental Biology, 17(1), 31–41.

    Article  CAS  Google Scholar 

  • Angelini, D. R., Kikuchi, M., & Jockusch, E. L. (2009). Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum. Developmental Biology, 327(1), 240–251.

    Article  CAS  PubMed  Google Scholar 

  • Bayramli, X., & Fuss, S. H. (2012). Born to run: Patterning the Drosophila olfactory system. Developmental Cell, 22(2), 240–241.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie, N., Hassan, B. A., Bermingham, N. A., Malicki, D. M., Armstrong, D., et al. (2000). Functional conservation of atonal and Math1 in the CNS and PNS. Development, 127(5), 1039–1048.

    CAS  PubMed  Google Scholar 

  • Bennet-Clark, H. C. (1971). Acoustics of insect song. Nature, 234, 255–259.

    Article  Google Scholar 

  • Bennet-Clark, H. C., & Ewing, A. W. (1969). Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster. Animal Behaviour, 17(4), 755–759.

    Article  Google Scholar 

  • Bermingham, N. A., Hassan, B. A., Price, S. D., Vollrath, M. A., Ben-Arie, N., et al. (1999). Math1: An essential gene for the generation of inner ear hair cells. Science, 284(5421), 1837–1841.

    Article  CAS  PubMed  Google Scholar 

  • Boekhoff-Falk, G. (2005). Hearing in Drosophila: Development of Johnston’s organ and emerging parallels to vertebrate ear development. Developmental Dynamics, 232(3), 550–558.

    Article  CAS  PubMed  Google Scholar 

  • Boekhoff-Falk, G., & Eberl, D. F. (2014). The Drosophila auditory system. Wiley Interdisciplinary Reviews: Developmental Biology, 3(2), 179–191.

    Article  CAS  PubMed  Google Scholar 

  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401–415.

    CAS  PubMed  Google Scholar 

  • Clyne, J. D., & Miesenböck, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell, 133(2), 354–363.

    Article  CAS  PubMed  Google Scholar 

  • Cobb, M., Burnet, B., Blizard, R., & Jallon, J. M. (1989). Courtship in Drosophila sechellia: Its structure, functional aspects, and relationship to those of other members of the Drosophila melanogaster species subgroup. Journal of Insect Behavior, 2(1), 63–89.

    Article  Google Scholar 

  • Cowling, D. E., & Burnet, B. (1981). Courtship songs and genetic control of their acoustic charasteristics in sibling species of the Drosophila melanogaster subgroup. Animal Behaviour, 29, 924–935.

    Article  Google Scholar 

  • Crossley, A. S., Bennet-Clark, H. C., & Evert, H. T. (1995). Courtship song components affect male and female Drosophila differently. Animal Behavior, 50, 827–839.

    Article  Google Scholar 

  • Diaz-Benjumea, F. J., Cohen, B., & Cohen, S. M. (1994). Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature, 372(6502), 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Dong, P. S., Dicks, J. S., & Panganiban, G. (2002). Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development, 129(8), 1967–1974.

    CAS  PubMed  Google Scholar 

  • Eberl, D. F., & Boekhoff-Falk, G. (2007). Development of Johnston’s organ in Drosophila. The International Journal of Developmental Biology, 51(6–7), 679–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberl, D. F., Duyk, G. M., & Perrimon, N. (1997). A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 94(26), 14837–14842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberl, D. F., Hardy, R. W., & Kernan, M. J. (2000). Genetically similar transduction mechanisms for touch and hearing in Drosophila. The Journal of Neuroscience, 20(16), 5981–5988.

    CAS  PubMed  Google Scholar 

  • Effertz, T., Wiek, R., & Göpfert, M. C. (2011). NompC TRP channel is essential for Drosophila sound receptor function. Current Biology, 21(7), 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Ewing, A. W. (1983). Functional aspects of Drosophila courtship. Biological Reviews, 58(2), 275–292.

    Article  Google Scholar 

  • Ewing, A. W. (1989). Arthropod bioacoustics: Neurobiology and behaviour. New York: Comstock (Cornell University Press).

    Google Scholar 

  • Ewing, A. W., & Bennet-Clark, H. C. (1968). The courtship songs of Drosophila. Behaviour, 31, 288–301.

    Article  Google Scholar 

  • Göpfert, M. C., & Robert, D. (2001). Biomechanics: Turning the key on Drosophila audition. Nature, 411(6840), 908.

    Google Scholar 

  • Göpfert, M. C., & Robert, D. (2002). The mechanical basis of Drosophila audition. Journal of Experimental Biology, 205(9), 1199–1208.

    PubMed  Google Scholar 

  • Göpfert, M. C., & Robert, D. (2003). Motion generation by Drosophila mechanosensory neurons. Proceedings of the National Academy of Sciences of the USA, 100(9), 5514–5519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Göpfert, M. C., Humphris, A., Albert, J., Robert, D., & Hendrich, O. (2005). Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proceedings of the National Academy of Sciences of the USA, 102(2), 325–330.

    Google Scholar 

  • Greenspan, R. J., & Ferveur, J. F. (2000). Courtship in Drosophila. Annual Review of Genetics, 34, 205–232.

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth, A. J. (2008). Making an effort to listen: Mechanical amplification in the ear. Neuron, 59(4), 530–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudspeth, A. J. (2014). Integrating the active process of hair cells with cochlear function. Nature Reviews Neuroscience, 15(9), 600–614.

    Article  CAS  PubMed  Google Scholar 

  • Jarman, A. P. (2014). Development of the auditory organ (Johnston’s organ) in Drosophila. In R. Romand & I. Varela-Nieto (Eds.), Development of auditory and vestibular systems. Oxford, UK: Academic Press.

    Google Scholar 

  • Jarman, A. P., Grau, Y., Jan, L. Y., & Jan, Y. N. (1993). atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell, 73(7), 1307–1321.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson, T., Kravitz, E. A., & Heinrich, R. (2011). Sound production during agonistic behavior of male Drosophila melanogaster. Fly, 5(1), 29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamikouchi, A. (2013). Auditory neuroscience in fruit flies. Neuroscience Research, 76(3), 113–118.

    Article  PubMed  Google Scholar 

  • Kamikouchi, A., & Fiala, A. (2013). Monitoring neural activity with genetically encoded Ca2+ indicators. In H. Ogawa & K. Oka (Eds.), Methods in neuroethological research (pp. 103–114). Tokyo: Springer Japan.

    Chapter  Google Scholar 

  • Kamikouchi, A., Shimada, T., & Ito, K. (2006). Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. The Journal of Comparative Neurology, 499(3), 317–356.

    Article  PubMed  Google Scholar 

  • Kamikouchi, A., Inagaki, H. K., Effertz, T., Hendrich, O., Fiala, A., et al. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature, 458(7235), 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Kamikouchi, A., Albert, J. T., & Gopfert, M. C. (2010). Mechanical feedback amplification in Drosophila hearing is independent of synaptic transmission. The European Journal of Neuroscience, 31(4), 697–703.

    Article  PubMed  Google Scholar 

  • Kazama, H. (2014). Systems neuroscience in Drosophila: Conceptual and technical advantages. Neuroscience. doi:10.1016/j.neuroscience.2014.06.035

    Google Scholar 

  • Kernan, M. J. (2007). Mechanotransduction and auditory transduction in Drosophila. Pflügers Archiv-European Journal of Physiology, 454(5), 703–720.

    Article  CAS  PubMed  Google Scholar 

  • Lai, J. S.-Y., Lo, S.-J., Dickson, B. J., & Chiang, A.-S. (2012). Auditory circuit in the Drosophila brain. Proceedings of the National Academy of Sciences of the USA, 109(7), 2607–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnert, B. P., Baker, A. E., Gaudry, Q., Chiang, A. S., & Wilson, R. I. (2013). Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron, 77(1), 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Martin, P., Hudspeth, A., & Jülicher, F. (2001). Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. Proceedings of the National Academy of Sciences of the USA, 98(25), 14380–14385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo, E., & Kamikouchi, A. (2013). Neuronal encoding of sound, gravity, and wind in the fruit fly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 199(4), 253–262.

    Article  PubMed  Google Scholar 

  • Matsuo, E., Yamada, D., Ishikawa, Y., Asai, T., Ishimoto, H., & Kamikouchi, A. (2014). Identification of novel vibration-and deflection-sensitive neuronal subgroups in Johnston’s organ of the fruit fly. Frontiers in Physiology. doi:10.3389/fphys.2014.00179.

    Google Scholar 

  • Matsuo, E., Seki, H., Asai, T., Morimoto, T., Miyakawa, H., Ito, K., & Kamikouchi, A. (2016). Organization of projection neurons and local neurons of the primary auditory center in the fruit fly Drosophila melanogaster. Journal of Comparative Neurology, 524(6), 1099–1164.

    Google Scholar 

  • Menda, G., Bar, H. Y., Arthur, B. J., Rivlin, P. K., Wyttenbach, R. A., et al. (2011). Classical conditioning through auditory stimuli in Drosophila: Methods and models. The Journal of Experimental Biology, 214(Pt 17), 2864–2870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadrowski, B., Martin, P., & Jülicher, F. (2004). Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. Proceedings of the National Academy of Sciences of the USA, 101(33), 12195–12200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paillette, M., Ikeda, H., & Jallon, J.-M. (1991). A new acoustic signal of the fruit-flies Drosophila simulans and D. melanogaster. Bioacoustics, 3(4), 247–254.

    Article  Google Scholar 

  • Riabinina, O., Dai, M., Duke, T., & Albert, J. T. (2011). Active process mediates species-specific tuning of Drosophila ears. Current Biology, 21(8), 658–664.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie, M. G., Halsey, E. J., & Gleason, J. M. (1999). Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D. melanogaster song. Animal Behaviour, 58(3), 649–657.

    Article  PubMed  Google Scholar 

  • Shorey, H. (1962). Nature of the sound produced by Drosophila melanogaster during courtship. Science, 137(3531), 677–678.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, J. H. (2009). Mapping and manipulating neural circuits in the fly brain. Advances in Genetics, 65, 79–143.

    Article  CAS  PubMed  Google Scholar 

  • Spieth, H. T. (1974). Courtship behavior in Drosophila. Annual Review of Entomology, 19(1), 385–405.

    Article  CAS  PubMed  Google Scholar 

  • Talyn, B. C., & Dowse, H. B. (2004). The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Animal Behaviour, 68(5), 1165–1180.

    Article  Google Scholar 

  • Tauber, E., & Eberl, D. F. (2003). Acoustic communication in Drosophila. Behavioural Processes, 64(2), 197–210.

    Article  Google Scholar 

  • Todi, S. V., Sharma, Y., & Eberl, D. F. (2004). Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microscopy Research and Technique, 63(6), 388–399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tootoonian, S., Coen, P., Kawai, R., & Murthy, M. (2012). Neural representations of courtship song in the Drosophila brain. The Journal of Neuroscience, 32(3), 787–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uga, S., & Kuwabara, M. (1965). On the fine structure of the chordotonal sensillum in antenna of Drosophila melanogaster. Journal of Electron Microscopy, 14(3), 173–181.

    Google Scholar 

  • Vaughan, A. G., Zhou, C., Manoli, D. S., & Baker, B. S. (2014). Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Current Biology, 24(10), 1039–1049.

    Article  CAS  PubMed  Google Scholar 

  • von Reyn, C. R., Breads, P., Peek, M. Y., Zheng, G. Z., Williamson, W. R., et al. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970.

    Article  Google Scholar 

  • von Schilcher, F. (1976). The role of auditory stimuli in the courtship of Drosophila melanogaster. Animal Behaviour, 24(1), 18–26.

    Article  Google Scholar 

  • Wang, V. Y., Hassan, B. A., Bellen, H. J., & Zoghbi, H. Y. (2002). Drosophila atonal fully rescues the phenotype of Math1 null mice: New functions evolve in new cellular contexts. Current Biology, 12(18), 1611–1616.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, D. A., Fields, W. L., & Hall, J. C. (1988). Spectral analysis of Drosophila courtship songs: D. melanogaster, D. simulans, and their interspecific hybrid. Behavior Genetics, 18(6), 675–703.

    Article  CAS  PubMed  Google Scholar 

  • Yager, D. D. (1999). Structure, development, and evolution of insect auditory systems. Microscopy Research and Technique, 47(6), 380–400.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J., Matsuo, E., Yamada, D., Mizuno, H., Morimoto, T., et al. (2013). Selectivity and plasticity in a sound-evoked male-male interaction in Drosophila. PLoS ONE, 8(9), e74289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorozu, S., Wong, A., Fischer, B. J., Dankert, H., Kernan, M. J., et al. (2009). Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature, 458(7235), 201–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azusa Kamikouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamikouchi, A., Ishikawa, Y. (2016). Hearing in Drosophila . In: Pollack, G., Mason, A., Popper, A., Fay, R. (eds) Insect Hearing. Springer Handbook of Auditory Research, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-28890-1_10

Download citation

Publish with us

Policies and ethics