Neuroscience and Consumer Finance

  • Benjamin F. CummingsEmail author
  • Michael A. Guillemette


Developments in neuroscience research methods have allowed for considerable advancements in our understanding of the role of various parts of the brain in making decisions, and specifically, in making financial decisions. Of particular interest, research using functional magnetic resonance imaging (fMRI) analyzes changes in blood flow to various parts of the brain, which corresponds with an increased use of that area of the brain. fMRI research has discovered a great deal about the neural environment in which individuals make financial decisions. This chapter provides an overview of neuroscience and neuroscience research methods and highlights recent neuroscience research findings related to a variety of financial decisions consumers face, including purchase decisions, investment and portfolio management decisions, and choosing a financial advisor.


Financial decisions Framing effect Functional magnetic resonance imaging Hyperbolic discounting Investment decisions Loss aversion Neuroscience 



The authors are very grateful for the ongoing guidance of Russell N. James, III, Ph.D., JD, CFP®, at Texas Tech University who allowed us to develop our interest in neuroscience research and who taught us most of what we know on the subject.


  1. Bechara, A., & Damasio, A. R. (2005). The somatic market hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52, 336–372.CrossRefGoogle Scholar
  2. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19(13), 5473–5481.PubMedGoogle Scholar
  3. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 274, 1293–1295.CrossRefGoogle Scholar
  4. Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30(2), 619–639.CrossRefPubMedGoogle Scholar
  5. Camerer, C. F., Loewenstein, G., & Prelec, D. (2004). Neuroeconomics: Why economics needs brains. Scandinavian Journal of Economics, 106(3), 555–579. doi: 10.1111/j.1467-9442.2004.00378.x.CrossRefGoogle Scholar
  6. Carter, M., & Shieh, J. (2010). Guide to research techniques in neuroscience. Burlington, MA: Academic.Google Scholar
  7. Coricelli, G., & Nagel, R. (2009). Neural correlates of depth of strategic reasoning in medial prefrontal cortex. Proceedings of the National Academy of Sciences, 106(23), 9163–9168.CrossRefGoogle Scholar
  8. Croson, R., & Gneezy, U. (2009). Gender differences in preferences. Journal of Economic Literature, 47(2), 448–474.CrossRefGoogle Scholar
  9. Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain. New York: Putnam.Google Scholar
  10. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions: Biological Sciences, 351(1346), 1413–1420.CrossRefGoogle Scholar
  11. De Martino, B., Camerer, C. F., & Adolphs, R. (2010). Amygdala damage eliminates monetary loss aversion. Proceedings of the National Academy of Sciences, 107(8), 3788–3792. doi: 10.1073/pnas.0910230107.CrossRefGoogle Scholar
  12. De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684–687.CrossRefPubMedPubMedCentralGoogle Scholar
  13. De Martino, B., O’Doherty, J. P., Ray, D., Bossaerts, P., & Camerer, C. (2013). In the mind of the market: Theory of mind biases value computation during financial bubbles. Neuron, 79(6), 1222–1231.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., & Wagner, G. G. (2011). Individual risk attitudes: Measurement, determinants, and behavioral consequences. Journal of the European Economic Association, 9(3), 522–550.CrossRefGoogle Scholar
  15. Dreher, J. C. (2007). Sensitivity of the brain to loss aversion during risky gambles. Trends in Cognitive Sciences, 11(7), 270–272.CrossRefPubMedGoogle Scholar
  16. Epstein, S. (1994). Integration of the cognitive and the psychodynamic unconscious. American Psychologist, 49(8), 709–724.CrossRefPubMedGoogle Scholar
  17. Friston, K.J. (2003). Experimental design and statistical parametric mapping. In R. Frackowiak, et al. (Eds.), Human Brain Function, (2nd ed). Retrieved from
  18. Frydman, C. (2014). What drives peer effects in financial decision-making? Neural and behavior evidence. Working paper. Retrieved from
  19. Fudenberg, D., & Levine, D. K. (2006). A dual-self model of impulse control. The American Economic Review, 96(5), 1449–1476.CrossRefGoogle Scholar
  20. Goetz, J., & James, R. N. (2008). Human choice and the emerging field of neuroeconomics: A review of brain science for the financial planner. Journal of Personal Finance, 6(4), 13–36.Google Scholar
  21. Gonzalez, C., Dana, J., Koshino, H., & Just, M. (2005). The framing effect and risky decisions: Examining cognitive functions with fMRI. Journal of Economic Psychology, 26(1), 1–20.CrossRefGoogle Scholar
  22. Guillemette, M., Martin, T.K., Cummings, B.F., & James, R. N. (2016). Determinants of the stated probability of purchase for longevity insurance. The Geneva Papers on Risk and Insurance – Issues and Practice, 41(1), 4-23.Google Scholar
  23. Haidt, J. (2006). The happiness hypothesis: Finding modern truth in ancient wisdom. New York: Basic Books.Google Scholar
  24. Huberman, G. (2001). Familiarity breeds investment. Review of Financial Studies, 14(3), 659–680.CrossRefGoogle Scholar
  25. James, R. (2011). Applying neuroscience to financial planning practice: A framework and review. Journal of Personal Finance, 10(2), 10–65.Google Scholar
  26. James, R. (2013). Brain activity suggests planning designation helps calm investors. Journal of Financial Planning, 26(2), 52–59.Google Scholar
  27. Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
  28. Kahneman, D., & Frederick, S. (2007). Frames and brains: Elicitation and control of response tendencies. Trends in Cognitive Sciences, 11(2), 45–46.CrossRefPubMedGoogle Scholar
  29. Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). The endowment effect, loss aversion, and status quo bias. American Economic Review, 5(1), 193–206.Google Scholar
  30. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 42, 263–291.CrossRefGoogle Scholar
  31. Kenning, P., Mohr, P., Erk, S., Walter, H., & Plassmann, H. (2006). The role of fear in home-biased decision making: First insights from neuroeconomics. Munich Personal RePEc Archive. Retrieved from
  32. Khoshnevisan, M., Nahavandi, S., Bhattacharya, S., & Bakhtiary, M. (2008). fMRI studies in neuro-fuzzy and behavioral finance: A case based approach. Investment Management and Financial Innovations, 5(3), 111–120.Google Scholar
  33. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156. doi: 10.1016/j.neuron.2006.11.010.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kunreuther, H., & Pauly, M. (2004). Neglecting disaster: Why don’t people insure against large losses? Journal of Risk and Uncertainty, 28(1), 5–21.CrossRefGoogle Scholar
  35. Loewenstein, G., & O’Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Retrieved from
  36. Lundbeck Institute (2011). Brain atlas. Retrieved from
  37. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507. doi: 10.1126/science.1100907.CrossRefPubMedGoogle Scholar
  38. NINDS (2014). Brain basics: Know your brain. National Institutes of Health (NIH) Publication No. 11-3440a. National Institute of Neurological Disorders and Stroke: Bethesda, MD. Retrieved from
  39. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102.CrossRefPubMedGoogle Scholar
  40. Peterson, R. L. (2005). The neuroscience of investing: fMRI of the reward system. Brain Research Bulletin, 67(5), 391–397. doi: 10.1016/j.brainresbull.2005.06.015.CrossRefPubMedGoogle Scholar
  41. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331–348.CrossRefPubMedGoogle Scholar
  42. Powell, M., & Ansic, D. (1997). Gender differences in risk behavior in financial decision-making: An experimental analysis. Journal of Economic Psychology, 18(6), 605–628.CrossRefGoogle Scholar
  43. Reimann, M., Schilke, O., Weber, B., Neuhaus, C., & Zaichkowsky, J. (2011). Functional magnetic resonance imaging in consumer research: A review and application. Psychology & Marketing, 28(6), 608–637.CrossRefGoogle Scholar
  44. Rick, S. (2011). Losses, gains, and brains: Neuroeconomics can help to answer open questions about loss aversion. Journal of Consumer Psychology, 21, 453–463.CrossRefGoogle Scholar
  45. Seiler, M.J., Walden, E., & Lane, M. (2012). Strategic mortgage default and the decision to follow the herd: A neurological explanation. Working paper. Retrieved from
  46. Shiv, B., Loewenstein, G., Bechara, A., Damasio, H., & Damasio, A. (2005). Investment behavior and the negative side of emotion. Psychological Science, 16(6), 435–439.PubMedGoogle Scholar
  47. Sokol-Hessner, P., Camerer, C. F., & Phelps, E. A. (2013). Emotion regulation reduces loss aversion and decreases amygdala responses to losses. Social Cognitive and Affective Neuroscience, 8(3), 341–350.CrossRefPubMedGoogle Scholar
  48. Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., & Phelps, E. A. (2009). Thinking like a trader selectively reduces individuals’ loss aversion. Proceedings of the National Academy of Sciences, 106(13), 5035–5040. doi: 10.1073/pnas.0806761106.CrossRefGoogle Scholar
  49. Strong, N., & Xu, X. (2003). Understanding the equity home bias: Evidence from survey data. Review of Economics and Statistics, 85(2), 307–312.CrossRefGoogle Scholar
  50. Thaler, R. H., & Shefrin, H. M. (1981). An economic theory of self-control. The Journal of Political Economy, 89(2), 392–406.CrossRefGoogle Scholar
  51. Thaler, R. H., & Benartzi, S. (2004). Save More Tomorrow: Using behavioral economics to increase employee saving. Journal of Political Economy, 112(S1), S164–S187.CrossRefGoogle Scholar
  52. Trepel, C., Fox, C. R., & Poldrack, R. A. (2005). Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Cognitive Brain Research, 23(1), 43–50.CrossRefGoogle Scholar
  53. Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453–458.CrossRefPubMedGoogle Scholar
  54. Uppal, R. (1992). The economic determinants of the home country bias in investors’ portfolios: A survey. Journal of International Financial Management & Accounting, 4(3), 171–189.CrossRefGoogle Scholar
  55. Weierich, M. R., Kensinger, E. A., Munnel, A. H., Sass, S. A., Dickerson, B. C., Wright, C. I., et al. (2011). Older and wiser? An affective science perspective on age-related challenges in financial decision making. Social Cognitive and Affective Neuroscience, 6(2), 195–206. doi: 10.1093/scan/nsq056.CrossRefPubMedGoogle Scholar
  56. Zhou, Y., Li, S., Dunn, J., Li, H., Qin, W., Zhu, M., Rao, L., Song, M., Yu, C., & Jiang, T. (2014). The neural correlates of risk propensity in males and females using resting-state fMRI. Frontiers in Behavioral Neuroscience, 8(2). doi: 10.3389/fnbeh.2014.00002.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Benjamin F. Cummings
    • 1
    Email author
  • Michael A. Guillemette
    • 2
  1. 1.Department of FinanceSaint Joseph’s UniversityPhiladelphiaUSA
  2. 2.Department of Personal Financial PlanningUniversity of MissouriColumbiaUSA

Personalised recommendations