Student Action Prediction for Automatic Tutoring for Procedural Training in 3D Virtual Environments

  • Diego Riofrío-LuzcandoEmail author
  • Jaime Ramírez
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 160)


This paper presents a way to predict student actions, by using student logs generated by a 3D virtual environment for procedural training. Each student log is categorized in a cluster based on the number of errors and the total time spent to complete the entire practice. For each cluster an extended automata is created, which allows us to generate more reliable predictions according to each student type. States of this extended automata represent the effect of a student correct or failed action. The most common behaviors can be predicted considering the sequences of more frequent actions. This is useful to anticipate common student errors, and this can help an Intelligent Tutoring System to generate feedback proactively.


Intelligent Tutoring Systems Educational Data Mining e-learning Procedural training Virtual environments 



I would like to acknowledge Secretariat of Higher Education, Science, Technology and Innovation from Ecuador (SENESCYT) for their economic support.


  1. 1.
    Baker, R.S.: Educational data mining: an advance for intelligent systems in education. IEEE Intell. Syst. 29(3), 78–82 (2014)CrossRefGoogle Scholar
  2. 2.
    Bogarín, A., Romero, C., Cerezo, R., Sánchez-Santillán, M.: Clustering for improving educational process mining. In: Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, pp. 11–15. ACM, New York (2014)Google Scholar
  3. 3.
    Buche, C., Querrec, R.: An expert system manipulating knowledge to help human learners into virtual environment. Expert Syst. Appl. 38(7), 8446–8457 (2011)CrossRefGoogle Scholar
  4. 4.
    Buche, C., Querrec, R., De Loor, P.: MASCARET: pedagogical multi-agents systems for virtual environment for training. Cyberworlds (2003)Google Scholar
  5. 5.
    Clemente, J.: Una Propuesta de Modelado del Estudiante Basada en Ontologías y Diagnóstico Pedagógico-Cognitivo no Monótono. Ph.D. thesis (2011)Google Scholar
  6. 6.
    Clemente, J., Ramírez, J., de Antonio, A.: A proposal for student modeling based on ontologies and diagnosis rules. Expert Syst. Appl. 38(7), 8066–8078 (2011)CrossRefGoogle Scholar
  7. 7.
    de Antonio, A., Imbert, P.R., Méndez, G., Ramírez, J.: Intelligent virtual environments for training: an agent-based approach. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 82–91. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Dekker, G.W., Pechenizkiy, M., Vleeshouwers, J.M.: Predicting students drop out: a case study. In: International Working Group on Educational Data Mining, ERIC (2009)Google Scholar
  9. 9.
    Fournier-Viger, P., Nkambou, R., Nguifo, E.M., Mayers, A., Faghihi, U.: A multiparadigm intelligent tutoring system for robotic arm training. IEEE Trans. Learn. Technol. 6(4), 364–377 (2013)CrossRefGoogle Scholar
  10. 10.
    Imbert, R., Sánchez, L., de Antonio, A., Méndez, G., Ramírez, J.: A multiagent extension for virtual reality based intelligent tutoring systems. In: Seventh IEEE International Conference on Advanced Learning Technologies, 2007, ICALT 2007, pp. 82–84 (2007)Google Scholar
  11. 11.
    Johnson, W.L., Rickel, J.: Steve: an animated pedagogical agent for procedural training in virtual environments. SIGART Bull. 8(1–4), 16–21 (1997)CrossRefGoogle Scholar
  12. 12.
    Lara, J.A., Lizcano, D., Martínez, M.A., Pazos, J., Riera, T.: A system for knowledge discovery in e-learning environments within the European Higher Education Area Application to student data from Open University of Madrid, UDIMA. Comput. Educ. 72, 23–36 (2014)CrossRefGoogle Scholar
  13. 13.
    Los Arcos, J.L., Muller, W., Fuente, O., Orúe, L., Arroyo, E., Leaznibarrutia, I., Santander, J.: LAHYSTOTRAIN: integration of virtual environments and ITS for surgery training. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 43–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Mostow, J., Beck, J.: Some useful tactics to modify, map and mine data from intelligent tutors. Nat. Lang. Eng. 12(2), 195–208 (2006)CrossRefGoogle Scholar
  15. 15.
    Rico, M., Ramírez, J., Riofrío, D., Berrocal-Lobo, M., De Antonio, A.: An architecture for virtual labs in engineering education. In: Global Engineering Education Conference (EDUCON) 2012, pp. 1–5, IEEE (2012)Google Scholar
  16. 16.
    Riofrío, D.: Diseño e Implementación de un Laboratorio Virtual de Biotecnología. Master’s thesis, ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid (2012)Google Scholar
  17. 17.
    Romero, C., Ventura, S.: Data mining in education. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 3(1), 12–27 (2013)CrossRefGoogle Scholar
  18. 18.
    Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.: Handbook of Educational Data Mining. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  19. 19.
    Sleeman, D., Brown, J.S.: Intelligent Tutoring Systems. Academic Press, New York (1982)Google Scholar
  20. 20.
    Swartout, W., Hill, R., Gratch, J., Johnson, W.L., Kyriakakis, C., LaBore, C., Lindheim, R., Marsella, S., Miraglia, D., Moore, B.: Toward the holodeck, integrating graphics, sound, character and story. Technical report (2006)Google Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  1. 1.ETSI InformáticosUPMMadridSpain

Personalised recommendations