Skip to main content

Creating and Controlling Complex Biological Brains

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 55))

Abstract

In this contribution, a look is taken at how animal and/or human brain cells can be cultivated (grown) and given a robot physical body (as a controlling brain) in which they can move around and interact with the world. This is realised as a new form of Artificial Intelligence in which the complexity of a highly nonlinear biological neural network is employed to uniquely control a real-world robot. The communication/control feedback loop is described and considered in terms of learning, performance, long-term operation and specialisation within the neural structure. Experimental results are presented and philosophical arguments opened up, e.g. can the robot be considered to be a living, conscious entity?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reger, B., Fleming, K., Sanguineti, V., Alford, S., Mussa-Ivaldi, F.: Connecting brains to robots: An artificial body for studying the computational properties of neural tissues. Artif. Life 6, 307–324 (2000)

    Article  Google Scholar 

  2. Holzer, R., Shimoyama, I., Miura, H.: Locomotion control of a bio-robotic system via electric stimulation. In: Proceedings of International Conference on Intelligent Robots and Systems, Grenoble, France (1997)

    Google Scholar 

  3. Talwar, S., Xu, S., Hawley, E., Weiss, S., Moxon, K., Chapin, J.: Rat navigation guided by remote control. Nature 417, 37–38 (2002)

    Article  Google Scholar 

  4. Chapin, J., Moxon, K., Markowitz, R., Nicolelis, M.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Neuroscience 2, 664–670 (1999)

    Google Scholar 

  5. Bakkum, D.J., Shkolnik, A., Ben-Ary, G., DeMarse, T. Potter, S.: Removing Some `A’ from AI: Embodied Cultured Networks, Lecture Notes in Computer Science, pp. 130-145 (2004)

    Google Scholar 

  6. Thomas, C., Springer, P., Loeb, G., Berwald-Netter, Y., Okun, L.: A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74, 61–66 (1972)

    Article  Google Scholar 

  7. Gross, G.: Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans. Biomed. Eng. 26, 273–279 (1979)

    Article  Google Scholar 

  8. Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2, 19–31 (1980)

    Article  Google Scholar 

  9. Potter, S., Lukina, N., Longmuir, K., Wu, Y.: Multi-site two-photon imaging of neurons on multi-electrode arrays. SPIE Proc. 4262, 104–110 (2001)

    Article  Google Scholar 

  10. Gross, G., Rhoades, B., Kowalski, J.: Dynamics of burst patterns generated by monolayer networks in culture. In: Neurobionics: An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, pp. 89–121 (1993)

    Google Scholar 

  11. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H., Kawana, A.: Spontaneous periodic synchronized bursting during the formation of mature patterns of connections in cortical neurons. Neurosci. Lett. 206, 109–112 (1996)

    Article  Google Scholar 

  12. Lewicki, M.: A review of methods for spike sorting: the detection and classification of neural action potentials. Network (Bristol) 9(4), R53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saito, S., Kobayashik, S., Ohashio, Y., Igarashi, M., Komiya, Y., Ando, S.: Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. J. Neurosci. Res. 39, 57–62 (1994)

    Article  Google Scholar 

  14. Ramakers, G.J., Corner, M.A., Habets, A.M.: Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of dissociated cerebral cortex. Exp. Brain Res. 79, 157–166 (1990)

    Article  Google Scholar 

  15. Chiappalone, M., Vato, A., Berdondini, L., Koudelka-Hep, M., Martinoia, S.: Network dynamics and synchronous activity in cultured cortical neurons. Int. J. Neural Syst., 17(2), 87–103 (2007)

    Google Scholar 

  16. Shkolnik, A.C.: Neurally controlled simulated robot: applying cultured neurons to handle an approach/avoidance task in real time, and a framework for studying learning in vitro, in mathematics and computer science. Masters thesis, Department of Computer Science, Emory University, Georgia (2003)

    Google Scholar 

  17. DeMarse, T.B., Dockendorf, K.P.: Adaptive flight control with living neuronal networks on microelectrode arrays. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, pp.1549–1551 (2005)

    Google Scholar 

  18. Shahaf, G., Marom, S.: Learning in networks of cortical neurons. J. Neurosci. 21(22), 8782–8788 (2001)

    Google Scholar 

  19. Bull, L., Uruokov, I.: Initial results from the use of learning classifier systems to control in vitro neuronal networks. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. (GECCO).pp. 369–376. The ACM, London, England (2007)

    Google Scholar 

  20. Hammond, M., Marshall, S., Downes, J., Xydas, D., Nasuto, S., Becerra, V., Warwick, K. Whalley, B.J.: Robust methodology for the study of cultured neuronal networks on MEAs. In: Proceedings 6th International Meeting on Substrate-Integrated Micro Electrode Arrays, pp. 293–294 (2008)

    Google Scholar 

  21. Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001)

    Article  Google Scholar 

  22. Rolston, J.D., Wagenaar, D.A., Potter, S.M.: Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience 148, 294–303 (2007)

    Article  Google Scholar 

  23. Wagenaar, D.A.D., T.B.; Potter, S.M.: MEABench: a toolset for multi-electrode data acquisition and on-line analysis. In: Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, pp. 518–521 (2005)

    Google Scholar 

  24. Xydas, D., Warwick, K., Whalley, B., Nasuto, S., Becerra, V., Hammond, M., Downes, J.: Architecture for Living Neuronal Cell Control of a Mobile Robot. In: Proceedings of the European Robotics Symposium EUROS08, pp. 23–31. Prague, CZ, (2008)

    Google Scholar 

  25. Hutt, B., Warwick, K., Goodhew, I.: Emergent Behaviour in Autonomous Robots. In: Bryant, J., Atherton, M. and Collins, M. (eds.) Chapter 14 in Information Transfer in Biological Systems. Design in Nature Series, vol. 2, The WIT Press (2005)

    Google Scholar 

  26. Hasselmo, M.E.: Acetycholine and learning in a cortical associative memory source. Neural Comput. Arch. 5, 32–44 (1993)

    Article  Google Scholar 

  27. Cozzi, L., Chiappalone, M., Ide, A., Novellino, A., Martinoia, S., Sanguineti, V.: Coding and Decoding of Information in a Bi-directional Neural Interface. Neurocomputing 65(66), 783–792 (2005)

    Article  Google Scholar 

  28. Novellino, A., Cozzi, L., Chiappalone, M., Sanguinetti, V., Martinoia, S.: Connecting neurons to a mobile robot: an in vitro bi-directional neural interface, Comput. Intell. Neurosci. (2007)

    Google Scholar 

  29. Karniel, A., Kositsky, M., Fleming, K., Chiappalone, M., Sanguinetti, V., Alford, T., Mussa-Ivaldi, A.: Computational Analysis In Vitro: Dynamics and Plasticity of a Neuro-Robotic System. J. Neural Eng. 2, S250–S265 (2005)

    Article  Google Scholar 

  30. Hutt, B., Warwick, K.: Museum robots: multi-robot systems for public exhibition. In: Proceedings of the 35th International Symposium on Robotics, p.52. Paris, France (2004)

    Google Scholar 

  31. Marks, P.: Rat-brained robots take their first steps. New Sci. 199(2669), 22–23 (2008)

    Article  Google Scholar 

  32. DeMarse, T., Wagenaar, D., Blau, A., Potter, S.: The neurally controlled animat: Biological brains acting with simulated bodies. Auton. Robots 11, 305–310 (2001)

    Article  MATH  Google Scholar 

  33. Chang, Q., Gold, P.: Switching memory systems during learning: Changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. J. Neurosci. 23, 3001–3005 (2003)

    Google Scholar 

  34. Xydas, D., Downes, J., Spencer, M., Hammond, M., Nasuto, S., Whalley, B., Becerra, V., Warwick, K.: Revealing ensemble state transition patterns in multi-electrode neural recordings using hidden Markov models. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 345–355 (2011)

    Article  Google Scholar 

  35. Warwick, K., Xydas, D., Nasuto, S., Becerra, V., Hammond, M., Downes, J., Marshall, S., Whalley, B.: Controlling a mobile robot with a biological brain. Def. Sci. J. 60(1), 5–14 (2010)

    Article  Google Scholar 

  36. Warwick, K., Nasuto, S., Becerra, V., Whalley, B.: Experiments with an in-vitro robot brain. In: Cai Y., (ed.) Computing with Instinct, Lecture Notes in Computer Science, vol. 5897, pp. 1–15, Springer, Berlin (2011)

    Google Scholar 

  37. Spencer, M., Downes, J., Xydas, D., Hammond, M., Becerra, V., Warwick, K., Whalley, B., Nasuto, S.: Multiscale evolving complex network model of functional connectivity in neuronal cultures, IEEE Trans. Biomed. Eng., 59(1), 30–34 (2012)

    Google Scholar 

  38. Warwick, K.: Implications and consequences of robots with biological brains. Ethics Inf. Technol. 12(3), 223–234 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the UK Engineering and Physical Sciences Research Council (EPSRC) under Grant No. EP/D080134/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Warwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warwick, K. (2016). Creating and Controlling Complex Biological Brains. In: Dimirovski, G. (eds) Complex Systems. Studies in Systems, Decision and Control, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-28860-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28860-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28858-1

  • Online ISBN: 978-3-319-28860-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics