Skip to main content

Optimized Schwarz Domain Decomposition Methods for Scalar and Vector Helmholtz Equations

  • Chapter
  • First Online:

Part of the book series: Geosystems Mathematics ((GSMA))

Abstract

In this chapter we review Schwarz domain decomposition methods for scalar and vector Helmholtz equations, with a focus on the choice of the associated transmission conditions between the subdomains. The methods are analyzed in both acoustic and electromagnetic settings, and generic weak formulations directly amenable to finite element discretization are presented. An open source solver along with ready-to-use examples is freely available online for further testing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Alonso-Rodriguez and L. Gerardo-Giorda. New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput., 28(1):102–122, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  3. X. Antoine, M. Darbas, and Y.Y. Lu. An improved surface radiation condition for high-frequency acoustic scattering problems. Comput. Methods Appl. Mech. Engrg., 195(33–36):4060–4074, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  4. X. Antoine, C. Geuzaine, and K. Ramdani. Wave Propagation in Periodic Media - Analysis, Numerical Techniques and Practical Applications, volume 1, chapter Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, pages 73–107. Progress in Computational Physics, 2010.

    Google Scholar 

  5. S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.

  6. A. Bayliss, M. Gunzburger, and E. Turkel. Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math., 42(2):430–451, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185–200, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez. An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys., 223(2):469–488, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Boubendir. An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem. J. Comput. Appl. Math., 204(2):282–291, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. Journal of Computational Physics, 231(2):262–280, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Boubendir, A. Bendali, and M. B. Fares. Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Internat. J. Numer. Methods Engrg., 73(11):1624–1650, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput., 19(6):2061–2090 (electronic), 1998.

    Google Scholar 

  13. B. Després. Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Le théorème de Borg pour l’équation de Hill vectorielle. PhD thesis, Rocquencourt, 1991. Thèse, Université de Paris IX (Dauphine), Paris, 1991.

    Google Scholar 

  14. B. Després, P. Joly, and J. E. Roberts. A domain decomposition method for the harmonic Maxwell equations. In Iterative methods in linear algebra (Brussels, 1991), pages 475–484, Amsterdam, 1992. North-Holland.

    Google Scholar 

  15. V. Dolean, J. M. Gander, S. Lanteri, J.-F. Lee, and Z. Peng. Optimized Schwarz methods for curl-curl time-harmonic Maxwell’s equations. 2013.

    MATH  Google Scholar 

  16. V. Dolean, M. J. Gander, and L. Gerardo-Giorda. Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput., 31(3):2193–2213, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Dular and C. Geuzaine. GetDP Web page, http:://getdp.info, 2015. [online]. available: http:://getdp.info.

  18. P. Dular, C. Geuzaine, F. Henrotte, and W. Legros. A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Transactions on Magnetics, 34(5):3395–3398, September 1998.

    Google Scholar 

  19. M. El Bouajaji, X Antoine, and C. Geuzaine. Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell’s equations. Journal of Computational Physics, 279(15):241–260, 2014.

    Google Scholar 

  20. M. El Bouajaji, V. Dolean, M. Gander, and S. Lanteri. Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM Journal on Scientific Computing, 34(4):A2048–A2071, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. El Bouajaji, B. Thierry, X. Antoine, and C. Geuzaine. A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations. Journal of Computational Physics, 294(1):38–57, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Math. Comp., 31(139):629–651, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul., 9(2):686–710, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  24. O.G. Ernst and M.J. Gander. Why it is difficult to solve Helmholtz problems with classical iterative methods. In Ivan G. Graham, Thomas Y. Hou, Omar Lakkis, and Robert Scheichl, editors, Numerical Analysis of Multiscale Problems, volume 83 of Lecture Notes in Computational Science and Engineering, pages 325–363. Springer Berlin Heidelberg, 2012.

    Google Scholar 

  25. M. Gander. Optimized Schwarz methods. SIAM Journal on Numerical Analysis, 44(2):699–731, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Gander and L. Halpern. Méthode de décomposition de domaine. Encyclopédie électronique pour les ingénieurs, 2012.

    Google Scholar 

  27. M. J. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput., 24(1):38–60 (electronic), 2002.

    Google Scholar 

  28. C. Geuzaine. GetDP: a general finite-element solver for the de Rham complex. In PAMM Volume 7 Issue 1. Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, volume 7, pages 1010603–1010604. Wiley, 2008.

    Google Scholar 

  29. C. Geuzaine, F. Henrotte, E. Marchandise, J.-F. Remacle, P. Dular, and R. Vazquez Sabariego. ONELAB: Open Numerical Engineering LABoratory. Proceedings of the 7th European Conference on Numerical Methods in Electromagnetism (NUMELEC2012), 2012.

    Google Scholar 

  30. C. Geuzaine, F. Henrotte, E. Marchandise, J.-F. Remacle, and R. Vazquez Sabariego. ONELAB Web page, http:://onelab.info, 2015. [online]. available: http:://onelab.info.

  31. C. Geuzaine and J.-F. Remacle. Gmsh Web page, http:://gmsh.info, 2015. [online]. available: http:://gmsh.info.

  32. C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg., 79(11):1309–1331, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Geuzaine, B. Thierry, N. Marsic, D. Colignon, A. Vion, S. Tournier, Y. Boubendir, M. El Bouajaji, and X. Antoine. An open source domain decomposition solver for time-harmonic electromagnetic wave problems. In Proceedings of the 2014 IEEE Conference on Antenna and Measurements and Applications, CAMA 2014, November 2014.

    Google Scholar 

  34. D. Givoli. Computational absorbing boundaries. In Steffen Marburg and Bodo Nolte, editors, Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods, pages 145–166. Springer Berlin Heidelberg, 2008.

    Google Scholar 

  35. R. Kerchroud, X. Antoine, and A. Soulaimani. Numerical accuracy of a Padé-type non-reflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency. International Journal for Numerical Methods in Engineering, 64(10):1275–1302, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  36. P.-L. Lions. On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pages 202–223. SIAM, Philadelphia, PA, 1990.

    Google Scholar 

  37. FA Milinazzo, CA Zala, and GH Brooke. Rational square-root approximations for parabolic equation algorithms. Journal of the Acoustical Society of America, 101(2):760–766, FEB 1997.

    Google Scholar 

  38. A. Modave, E. Delhez, and C. Geuzaine. Optimizing perfectly matched layers in discrete contexts. International Journal for Numerical Methods in Engineering, 99(6):410–437, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Moiola and E. A. Spence. Is the Helmholtz equation really sign-indefinite? SIAM Rev., 56(2):274–312, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  40. F. Nataf. Interface connections in domain decomposition methods. NATO Science Series II, 75, 2001.

    Google Scholar 

  41. F. Nataf and F. Nier. Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains. Numer. Math., 75:357–377, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  42. J.-C. Nédélec. Acoustic and electromagnetic equations, volume 144 of Applied Mathematical Sciences. Springer-Verlag, New York, 2001. Integral representations for harmonic problems.

    Google Scholar 

  43. Z. Peng and J. Lee. A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic Maxwell equations in \(\mathbb{R}^{3}\). SIAM Journal on Scientific Computing, 34(3):A1266–A1295, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  44. Z. Peng, V. Rawat, and J.-F. Lee. One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. Journal of Computational Physics, 229(4):1181–1197, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Rawat and J.-F. Lee. Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell’s equations. SIAM J. Scientific Computing, 32(6):3584–3603, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Stolk. A rapidly converging domain decomposition method for the Helmholtz equation. Journal of Computational Physics, 241(0):240–252, 2013.

    Google Scholar 

  48. B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic, X. Antoine, and C. Geuzaine. GetDDM: an open framework for testing optimized Schwarz methods for time-harmonic wave problems. Submitted to Computer Physics Communications, 2015.

    Google Scholar 

  49. A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.

    Google Scholar 

  50. A. Vion, R. Bélanger-Rioux, L. Demanet, and C. Geuzaine. A DDM double sweep preconditioner for the Helmholtz equation with matrix probing of the DtN map. In Mathematical and Numerical Aspects of Wave Propagation WAVES 2013, June 2013.

    Google Scholar 

  51. A. Vion and C. Geuzaine. Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem. Journal of Computational Physics, 266(0):171–190, 2014.

    Google Scholar 

  52. A. Vion and C. Geuzaine. Parallel double sweep preconditioner for the optimized Schwarz algorithm applied to high frequency Helmholtz and Maxwell equations. In LNCSE, Proc. of DD22, 2014.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Wallonia-Brussels Federation (ARC grant for Concerted Research Actions ARC WAVES 15/19-03), the Belgian Science Policy (PAI grant P7/02), the Walloon Region (WIST3 grants ONELAB and ALIZEES), the French ANR (grant MicroWave NT09 460489 “Programme Blanc”) and the “EADS Foundation” (High-BRID project, grant 089-1009-1006). Computational resources have been provided by CÉCI, funded by F.R.S.-FNRS (Fonds de la Recherche Scientifique) under grant n2. 5020. 11, and the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, funded by the Walloon Region under grant n1117545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Geuzaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Antoine, X., Geuzaine, C. (2017). Optimized Schwarz Domain Decomposition Methods for Scalar and Vector Helmholtz Equations. In: Lahaye, D., Tang, J., Vuik, K. (eds) Modern Solvers for Helmholtz Problems. Geosystems Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-28832-1_8

Download citation

Publish with us

Policies and ethics