Skip to main content

How to Choose the Shift in the Shifted Laplace Preconditioner for the Helmholtz Equation Combined with Deflation

  • Chapter
  • First Online:
Modern Solvers for Helmholtz Problems

Part of the book series: Geosystems Mathematics ((GSMA))

Abstract

In recent work we showed that the performance of the complex shifted Laplace preconditioner for the discretized Helmholtz equation can be significantly improved by combining it multiplicatively with a deflation procedure that employs multigrid vectors. In this chapter we argue that in this combination the preconditioner improves the convergence of the outer Krylov acceleration through a new mechanism. This mechanism allows for a much larger damping and facilitates the approximate solve with the preconditioner. The convergence of the outer Krylov acceleration is not significantly delayed and occasionally even accelerated. To provide a basis for these claims, we analyze for a one-dimensional problem a two-level variant of the method in which the preconditioner is applied after deflation and in which both the preconditioner and the coarse grid problem are inverted exactly. We show that in case that the mesh is sufficiently fine to resolve the wave length, the spectrum after deflation consists of a cluster surrounded by two tails that extend in both directions along the real axis. The action of the inverse of the preconditioner is to shrink the length of the tails while at the same time rotating them and shifting the center of the cluster towards the origin. A much larger damping parameter than in algorithms without deflation can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math., 50(3–4):409–425, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based preconditioner for heterogeneous Helmholt problems. SIAM J. Sci. Comput, 27:1471–1492, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. I. Goldstein A. Bayliss and E. Turkel. An iterative method for the Helmholtz equation. Journal of Computational Physics, 49:443 – 457, 1983.

    Google Scholar 

  4. L. A. Laird and M. B. Giles. Preconditioned iterative solution of the 2D Helmholtz equation. Technical report, Comp. Lab. Oxford University UK, 2002. NA-02/12.

    Google Scholar 

  5. M. M. M. Made. Incomplete factorization-based preconditionings for solving the Helmholtz equation. International Journal for Numerical Methods in Engineering, 50:1077–1101, 2001.

    Article  MATH  Google Scholar 

  6. Y. A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. Electronic Transactions on Numerical Analysis, 31:403–424, 2008.

    MathSciNet  MATH  Google Scholar 

  7. B. Reps, W. Vanroose, and H. Bin Zubair. On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning. J. Comput. Phys., 229:8384–8405, November 2010.

    Google Scholar 

  8. M. Bollhöfer, M. J. Grote, and O. Schenk. Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM Journal on Scientific Computing, 31:3781–3805, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Airaksinen, E. Heikkola, A. Pennanen, and J. Toivanen. An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation. Journal of Computational Physics, 226:1196 – 1210, 2007.

    Google Scholar 

  10. M.J. Gander, I. G. Graham, and E. A. Spence. Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? Numerische Mathematik, pages 1–48, 2015.

    MATH  Google Scholar 

  11. J. Zhu, X. W. Ping, R. S. Chen, Z. H. Fan, and D. Z. Ding. An incomplete factorization preconditioner based on shifted Laplace operators for FEM analysis of microwave structures. Microwave and Optical Technology Letters, 52:1036–1042, 2010.

    Article  Google Scholar 

  12. T. Airaksinen, A. Pennanen, and J. Toivanen. A damping preconditioner for time-harmonic wave equations in fluid and elastic material. J. Comput. Phys., 228:1466–1479, March 2009.

    Google Scholar 

  13. C. D. Riyanti, A. Kononov, Y. A. Erlangga, C. Vuik, C. Oosterlee, R.E. Plessix, and W.A. Mulder. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation. Journal of Computational Physics, 224:431–448, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. E. Plessix. A Helmholtz iterative solver for 3D seismic-imaging problems. Geophysics, 72:SM185–SM194, 2007.

    Article  Google Scholar 

  15. R. E. Plessix. Three-dimensional frequency-domain full-waveform inversion with an iterative solver. Geophysics, 74(6):149–157, 2009.

    Article  Google Scholar 

  16. N. Umetani, S. P. MacLachlan, and C. W. Oosterlee. A multigrid-based shifted Laplacian preconditioner for a fourth-order Helmholtz discretization. Numerical Linear Algebra with Applications, 16:603–626, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Airaksinen and S. Mönkölä. Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics. J. Comput. Appl. Math., 234:1796–1802, July 2010.

    Google Scholar 

  18. L. Zepeda-Núnez and L. Demanet. The method of polarized traces for the 2D Helmholtz equation. Journal of Computational Physics, 308:347–388, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Osei-Kuffuor and Y. Saad. Preconditioning Helmholtz linear systems. Appl. Numer. Math., 60:420–431, April 2010.

    Google Scholar 

  20. H. Calandra, S. Gratton, R. Lago, X. Pinel, and X. Vasseur. Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics. Numerical Analysis and Applications, 5:175–181, 2012.

    Article  MATH  Google Scholar 

  21. Y.A. Erlangga. Advances in iterative methods and preconditioners for the Helmholtz equation. Archives of Computational Methods in Engineering, 15:37–66, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  22. Huangxin Chen, Haijun Wu, and Xuejun Xu. Multilevel preconditioner with stable coarse grid corrections for the helmholtz equation. SIAM Journal on Scientific Computing, 37(1):A221–A244, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Conen, V. Dolean, Rolf R. Krause, and F. Nataf. A coarse space for heterogeneous helmholtz problems based on the Dirichlet-to-Neumann operator. Journal of Computational and Applied Mathematics, 271:83–99, 2014.

    Google Scholar 

  24. M. Ganesh and C. Morgenstern. An efficient multigrid algorithm for heterogeneous acoustic media sign-indefinite high-order FEM models. Numerical Linear Algebra with Applications, 2016.

    Google Scholar 

  25. I. Livshits. Multiple galerkin adaptive algebraic multigrid algorithm for the helmholtz equations. SIAM Journal on Scientific Computing, 37(5):S195–S215, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. N. Olson and J. B. Schroder. Smoothed aggregation for helmholtz problems. Numerical Linear Algebra with Applications, 17(2-3):361–386, 2010.

    MathSciNet  MATH  Google Scholar 

  27. C. C. Stolk. A dispersion minimizing scheme for the 3-d Helmholtz equation based on ray theory. Journal of Computational Physics, 314:618–646, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Poulson, B. Engquist, S. Li, and L. Ying. A parallel sweeping preconditioner for heterogeneous 3d Helmholtz equations. SIAM Journal on Scientific Computing, 35(3):C194–C212, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Tsuji, B. Engquist, and L. Ying. A sweeping preconditioner for time-harmonic Maxwell equations with finite elements. Journal of Computational Physics, 231(9):3770–3783, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Vion and C. Geuzaine. Double sweep preconditioner for optimized schwarz methods applied to the helmholtz problem. Journal of Computational Physics, 266:171–190, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  31. AH Sheikh, D Lahaye, L Garcia Ramos, R Nabben, and C Vuik. Accelerating the shifted laplace preconditioner for the helmholtz equation by multilevel deflation. Journal of Computational Physics, 322:473–490, 2016.

    Google Scholar 

  32. M. B. van Gijzen, Y. A. Erlangga, and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM Journal on Scientific Computing, 29:1942–1958, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Cools and W. Vanroose. Local Fourier analysis of the complex shifted Laplacian preconditioner for helmholtz problems. Numerical Linear Algebra with Applications, 20(4):575–597, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. A. Erlangga and R. Nabben. Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices. SIAM J. Matrix Anal. Appl., 30(2):684–699, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. H. Sheikh, D. Lahaye, and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multilevel deflation. Numerical Linear Algebra with Applications, 20(4):645–662, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

    Google Scholar 

  37. A. H. Sheikh. Development of the Helmholtz Solver Based On A Shifted Laplace Preconditioner and A Multilevel Deflation Technique. PhD thesis, DIAM, TU Delft, 2014.

    Google Scholar 

  38. A. Bayliss, C.I. Goldstein, and E. Turkel. On accuracy conditions for the numerical computation of waves. Journal of Computational Physics, 59(3):396 – 404, 1985.

    Google Scholar 

  39. I. M. Babuska and S. A Sauter. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM review, 42(3):451–484, 2000.

    Google Scholar 

  40. O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems with classical iterative methods. In I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, editors, Numerical Analysis of Multiscale Problems, volume 83 of Lecture Notes in Computational Science and Engineering, pages 325–363. Springer Berlin Heidelberg, 2012.

    Google Scholar 

  41. M. Gander. Fourier analysis of Helmholtz problems with Robin boundary conditions. Private Communications 2016.

    Google Scholar 

  42. I. Livshits. Use of shifted laplacian operators for solving indefinite helmholtz equations. Numerical Mathematics: Theory, Methods and Applications, 8(01):136–148, 2015.

    MathSciNet  MATH  Google Scholar 

  43. J. M. Tang. Two Level Preconditioned conjugate gradient methods with applications to bubbly flow problems. PhD thesis, DIAM, TU Delft, 2008.

    Google Scholar 

  44. U. Trottenberg, C. W. Oosterlee, and A. SchĂĽller. Multigrid. Academic Press, London, 2000.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank Prof. Ira Livshits and Prof. Martin Gander for numerous discussions that indirectly give raise to material in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lahaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lahaye, D., Vuik, C. (2017). How to Choose the Shift in the Shifted Laplace Preconditioner for the Helmholtz Equation Combined with Deflation. In: Lahaye, D., Tang, J., Vuik, K. (eds) Modern Solvers for Helmholtz Problems. Geosystems Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-28832-1_4

Download citation

Publish with us

Policies and ethics