Seiberg–Witten Invariant of the Universal Abelian Cover of \({S_{-p/q}^{3}(K)}\)

  • József Bodnár
  • András NémethiEmail author


We prove an additivity property for the normalized Seiberg–Witten invariants with respect to the universal abelian cover of those 3-manifolds, which are obtained via negative rational Dehn surgeries along connected sum of algebraic knots. Although the statement is purely topological, we use the theory of complex singularities in several steps of the proof. This topological covering additivity property can be compared with certain analytic properties of normal surface singularities, especially with functorial behaviour of the (equivariant) geometric genus of singularities. We present several examples in order to find the validity limits of the proved property, one of them shows that the covering additivity property is not true for negative definite plumbed 3-manifolds in general.


3-Manifolds Abelian coverings Geometric genus Lattice cohomology Links of singularities Normal surface singularities Plumbed 3-manifolds \(\mathbb{Q}\)-Homology spheres Seiberg–Witten invariants Superisolated singularities Surgery 3-manifolds 

2010 Mathematics Subject Classification:

Primary. 32S05 32S25 32S50 57M27 Secondary. 14Bxx 32Sxx 57R57 55N35 



The first author is supported by the ‘Lendület’ and ERC program ‘LTDBud’ at MTA Alfréd Rényi Institute of Mathematics. The second author is partially supported by OTKA Grants 100796 and K112735.


  1. 1.
    Agol, I., Groves, D., Manning, J.: The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Band, A Series of Modern Surveys in Mathematics, vol. 4 Springer, Berlin (1984)Google Scholar
  3. 3.
    Bodnár, J., Némethi, A.: Lattice cohomology and rational cuspidal curves. Math. Res. Lett. 23 (2), 339–375 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borodzik, M., Livingston, C.: Heegaard-Floer homologies and rational cuspidal curves. Forum Math. Sigma 2, e28, 23 (2014)Google Scholar
  5. 5.
    Braun, G., Némethi, A.: Surgery formula for the Seiberg–Witten invariants of negative definite plumbed 3-manifolds. J. Reine Angew. Math. 638, 189–208 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Boston (1986)CrossRefzbMATHGoogle Scholar
  7. 7.
    Eisenbud, D., Neumann, W.: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Annals of Mathematics Studies, vol. 110. Princeton University Press, Princeton (1985)Google Scholar
  8. 8.
    Fernández de Bobadilla, J., Luengo, I., Melle-Hernández, A., Némethi, A.: On rational cuspidal projective plane curves. Proc. Lond. Math. Soc. 92 (1), 99–138 (2006)Google Scholar
  9. 9.
    Fernández de Bobadilla, J., Luengo, I., Melle-Hernández, A., Némethi, A.: On rational cuspidal curves, open surfaces and local singularities. In: Singularity Theory, Dedicated to Jean-Paul Brasselet on His 60th Birthday, Proceedings of the 2005 Marseille Singularity School and Conference, pp. 411–442 (2007)Google Scholar
  10. 10.
    Flenner, H., Zaidenberg, M.: On a class of rational cuspidal plane curves. Manuscr. Math. 89 (1), 439–459 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hom, J., Karakurt, Ç., Lidman, T.: Surgery obstructions and Heegaard Floer homology. Geom. Topol. 20 (4), 2219–2251 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kollár, J.: Shafarevich Maps and Automorphic Forms. Princeton University Press, Princeton (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. Math. 76 (2), 531–540 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Luengo, I.: The μ-constant stratum is not smooth. Invent. Math. 90 (1), 139–152 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Luengo, I., Melle-Hernandez, A., Némethi, A.: Links and analytic invariants of superisolated singularities. J. Algebr. Geom. 14 (3), 543–566 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Némethi, A.: The signature of f(x, y) + z n. In: Proceedings of Real and Complex Singularities, (C.T.C Wall’s 60th birthday meeting), Liverpool (England), August 1996. London Math. Soc. Lecture Notes Series, vol. 263 pp. 131–149 (1999)Google Scholar
  17. 17.
    Némethi, A.: Resolution graphs of some surface singularities. I. Cyclic Coverings, Singularities in Algebraic and Analytic Geometry (San Antonio, TX, 1999). Contemporary Mathematics, vol. 266, pp. 89–128. American Mathematical Society, Providence (2000)Google Scholar
  18. 18.
    Némethi, A.: Invariants of Normal Surface Singularities, Real and Complex Singularities. Contemporary Mathematics, vol. 354, pp. 161–208. American Mathematical Society, Providence (2004)Google Scholar
  19. 19.
    Némethi, A.: On the Heegaard Floer homology of S d 3(K) and unicuspidal rational plane curves. Geometry and Topology of Manifolds. Fields Institute Communications, vol. 47, pp. 219–234. American Mathematical Society, Providence (2005)Google Scholar
  20. 20.
    Némethi, A.: Graded roots and singularities. In: Singularities in Geometry and Topology, pp. 394–463. World Scientific, Hackensack (2007)Google Scholar
  21. 21.
    Némethi, A.: Lattice cohomology of normal surface singularities. Publ. RIMS. Kyoto Univ. 44, 507–543 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Némethi, A.: The Seiberg-Witten invariants of negative definite plumbed 3-manifolds. J. Eur. Math. Soc. 13 (4), 959–974 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Némethi, A.: The cohomology of line bundles of splice quotient singularities. Adv. Math. 229 (4), 2503–2524 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Némethi, A., Nicolaescu, L.: Seiberg-Witten invariants and surface singularities I. Geom. Topol. 6 (1), 269–328 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Némethi, A., Nicolaescu, L.: Seiberg-Witten invariants and surface singularities II.: singularities with good \(\mathbb{C}^{{\ast}}\)-action. J. Lond. Math. Soc. 69 (3), 593–607 (2004)Google Scholar
  26. 26.
    Némethi, A., Nicolaescu, L.: Seiberg-Witten invariants and surface singularities III.: splicings and cyclic covers. Sel. Math. 11 (3–4), 399–451 (2006)Google Scholar
  27. 27.
    Némethi, A., Román, F.: The lattice cohomology of S d 3(K). In: Zeta Functions in Algebra and Geometry. Contemporary Mathematics, vol. 566, pp. 261–292. American Mathematical Society, Providence (2012)Google Scholar
  28. 28.
    Némethi, A., Sigur\(\partial \) sson, B.: The geometric genus of hypersurface singularities. J. Eur. Math. Soc. 18 (4), 825–851 (2016)Google Scholar
  29. 29.
    Ozsváth, P.S., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. Math. 159, 1159–1245 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ozsváth, P.S., Szabó, Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. 159, 1027–1158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wallace, A.H.: Modifications and cobounding manifolds. Can. J. Math. 12, 503–528 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wise, D.T.: The structure of groups with a quasiconvex hierarchy. Preprint (2011)Google Scholar
  33. 33.
    Witten, E.: Monopoles and four-manifolds. Math. Res. Lett. 1, 769–796 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA
  2. 2.A. Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations