Advertisement

Divisor Class Groups of Affine Complete Intersections

  • Helmut A. HammEmail author
Chapter
  • 565 Downloads

Abstract

Geometrically interesting examples of factorial rings are provided by the coordinate rings of certain affine complete intersections. Here one has to show that the Weil divisor class group vanishes. Using Hodge theory or Deligne-Beilinson cohomology one can prove that it is sufficient to show the vanishing of certain singular homology groups. Examples from singularity theory are given.

Keywords

Deligne-Beilinson cohomology Divisor class group Factorial domain Hodge theory 

MSC classification numbers:

13F15 14C22 14M05 14C30 14F43 

References

  1. 1.
    Arnol’d, V.I.: Normal points of functions in neighbourhoods of degenerate critical points (Russian). Usp. Mat. Nauk 29 (2), 11–49 (1974); English transl.: Russian Math. Surveys 29 (2), 10–50 (1974)Google Scholar
  2. 2.
    Bǎnicǎ, C., Stǎnǎşilǎ, O.: Algebraic Methods in the Global Theory of Complex Spaces. Ed. Acad. Bucureşti/Wiley, London/New York (1976)zbMATHGoogle Scholar
  3. 3.
    Bourbaki, N.: Diviseurs, Algèbre Commutative, Chap. VII. Hermann, Paris (1965)zbMATHGoogle Scholar
  4. 4.
    Brieskorn, E.: Beispiele zur Differentialtopologie von Singularitäten. Invent. Math. 2, 1–14 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math. 4, 336–358 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Deligne, P.: Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970)Google Scholar
  7. 7.
    Deligne, P.: Théorie de Hodge II. Publ. Math. IHES 40, 5–57 (1971)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dolgachev, I.: Newton polyhedra and factorial rings. J. Pure Appl. Algebra 18, 253–258 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Esnault, H., Viehweg, E.: Deligne-Beilinson cohomology. In: Rapoport, M., et al. (ed.) Beilinson’s Conjectures on Special Values of L-Functions. Perspectives in Mathematics, vol. 4, pp. 43–91. Academic Press, San Diego (1988)CrossRefGoogle Scholar
  10. 10.
    Fulton, W.: Intersection Theory. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gajer, P.: Geometry of Deligne cohomology. Invent. Math. 127, 155–207 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Griffiths, P., Harris, J.: On the Noether-Lefschetz theorem and some remarks on codimension two cycles. Math. Ann. 271, 31–51 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hamm, H.A.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191, 235–252 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hamm, H.A.: Exotische Sphären als Umgebungsränder in speziellen komplexen Räumen. Math. Ann. 197, 44–56 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hamm, H.A.: Genus χ y of quasihomogeneous complete intersections. Funct. Anal. Appl. 11 (1), 78–79 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hamm, H.A.: Line bundles, connections, Deligne-Beilinson and absolute Hodge cohomology. arXiv.math.AG 1160924 (2015)Google Scholar
  18. 18.
    Hamm, H.A., Lê, D.T.: Lefschetz theorems on quasi-projective varieties. Bull. Soc. Math. France 113, 157–189 (1985)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hamm, H.A., Lê, D.T.: On the Picard group for non-complete algebraic varieties. In: Singularités Franco-Japonaises. Séminaires et Congrès, vol. 10, pp. 71–86. Société Mathématique de France, Paris (2005)Google Scholar
  20. 20.
    Hamm, H.A., Lê, D.T.: Picard group for line bundles with connection. arXiv.math.AG 1609.02738v1 (2016)Google Scholar
  21. 21.
    Iitaka, S.: Algebraic Geometry. Springer, New York (1981)zbMATHGoogle Scholar
  22. 22.
    Libgober, A.: Some properties of the signature of complete intersections. Proc. Am. Math. Soc. 79, 373–375 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Oka, M.: On the topology of full nondegenerate complete intersection variety. Nagoya Math. J. 121, 137–148 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schütt, M.: Two lectures on the arithmetic of K3 surfaces. In: Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds. Fields Institute Communications, vol. 67, pp. 71–99. Springer, New York (2013)Google Scholar
  25. 25.
    Shioda, T.: On the Picard number of a complex projective variety. Ann. Sci. Éc. Norm. Supér. (4) 14, 303–321 (1981)Google Scholar
  26. 26.
    Siu, Y.-T.: Analytic sheaves of local cohomology. Trans. Am. Math. Soc. 148, 347–366 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Storch, U.: Fastfaktorielle Ringe. Schr. Math. Inst. Univ. Münster 36, 1967Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fachbereich Mathematik und Informatik, Mathematisches InstitutWWU MünsterMünsterGermany

Personalised recommendations