A Kirwan Blowup and Trees of Vector Bundles

  • G. TrautmannEmail author


In the paper (Markushevich et al., Cent Eur J Math 10:1331–1355, 2012) a conceptual description of compactifications of moduli spaces of stable vector bundles on surfaces has been given, whose boundaries consist of vector bundles on trees of surfaces. In this article a typical basic case for the projective plane is described explicitly including the construction of a relevant Kirwan blowup.


Blowups GIT quotients Moduli Vector bundles 

2010 Mathematics Subject Classification.

14J60 14D06 14D20 14D23 


  1. 1.
    Eisenbud, D., Harris, J.: The Geometry of Schemes. Graduate Texts in Mathematics, vol. 197. Springer, New York (2001)Google Scholar
  2. 2.
    Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)Google Scholar
  3. 3.
    Hartshorne, R.: Algebraic Geometry. Springer, New York, Heidelberg, Berlin (1977)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kirwan, F.: Partial desingularisations of quotients of nonsingular varieties and their Betti numbers. Ann. Math. 122, 41–85 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Markushevich, D., Tikhomirov, A.S., Trautmann, G.: Bubble tree compactification of moduli spaces of vector bundles on surfaces. Cent. Eur. J. Math. 10, 1331–1355 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mumford, D., Fogarty, J.: Geometric Invariant Theory, 2nd enlarged edn. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  7. 7.
    Narasimhan, M.S., Trautmann, G.: Compactification of \(M_{P_{3}}(0,2)\) and Poncelet pairs of conics. Pac. J. Math. 145, 255–365 (1990)CrossRefzbMATHGoogle Scholar
  8. 8.
    Newstead, P.: Introduction to Moduli Problems and Orbit Spaces. Tata Institute Lectures, vol. 51, Springer (1978)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations