Advertisement

Deforming Nonnormal Isolated Surface Singularities and Constructing Threefolds with \(\mathbb{P}^{1}\) as Exceptional Set

  • Jan StevensEmail author
Chapter
  • 575 Downloads

Abstract

Normally one assumes isolated surface singularities to be normal. The purpose of this paper is to show that it can be useful to look at nonnormal singularities. By deforming them interesting normal singularities can be constructed, such as isolated, non-Cohen-Macaulay threefold singularities. They arise by a small contraction of a smooth rational curve, whose normal bundle has a sufficiently positive subbundle. We study such singularities from their nonnormal general hyperplane section.

Keywords

Nonnormal singularities Simultaneous normalisation Small modifications 

MSC codes

32S05 32S25 14B07 32S30 

References

  1. 1.
    Ando, T.: An example of an exceptional (−2n − 1, n)-curve in an algebraic 3-fold. Proc. Jpn. Acad. Ser. A Math. Sci. 66, 269–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ando, T.: On the normal bundle of P 1 in a higher-dimensional projective variety. Am. J. Math. 113, 949–961 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ando, T.: On the normal bundle of an exceptional curve in a higher-dimensional algebraic manifold. Math. Ann. 306, 625–645 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Artin, M., Nagata, M.: Residual intersections in Cohen-Macaulay rings. J. Math. Kyoto Univ. 12, 307–323 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aure, A., Decker, W., Hulek, K., Popescu, S., Ranestad, K.: Syzygies of Abelian and bielliptic surfaces in P 4. Int. J. Math. 8, 849–919 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chiang-Hsieh, H.-J., Lipman, J.: A numerical criterion for simultaneous normalization. Duke Math. J. 133, 347–390 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Clemens, H., Kollár, J., Mori, S.: Higher-dimensional complex geometry. Astérisque 166, 144 pp. (1988)Google Scholar
  8. 8.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-1 — A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de
  9. 9.
    Elkik, R.: Singularités rationnelles et déformations. Invent. Math. 47, 139–147 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grauert, H., Remmert, R.: Analytische stellenalgebren. In: Unter Mitarbeit von O. Riemenschneider. Grundlehren der Mathmatischen Wissenschaften, vol. 176. Springer, Berlin (1971)Google Scholar
  11. 11.
    Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer Monographs in Mathematics. Springer, Berlin (2007)zbMATHGoogle Scholar
  12. 12.
    Karras, U.: Local cohomology along exceptional sets. Math. Ann. 275, 673–682 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kleiman, S.L.: The enumerative theory of singularities. In: Real and complex singularities. Proceedings of Ninth Nordic Summer School/NAVF Symposium in Mathematics, Oslo, 1976, pp. 297–396. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)Google Scholar
  14. 14.
    Kollár, J.: Flatness criteria. J. Algebra 175, 715–727 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laufer, H.B.: On rational singularities. Am. J. Math. 94, 597–608 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Laufer, H.B.: On CP 1 as an exceptional set. In: Recent Developments in Several Complex Variables. Annals of Mathematical Studies, vol. 100, pp. 261–275. Princeton University Press, Princeton, NJ (1981)Google Scholar
  17. 17.
    Lê, D.T., Tosun, M.: Combinatorics of rational singularities. Comment. Math. Helv. 79, 582–604 (2004)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Martin, B.: deform.lib. A Singular 4-0-2 library for computing miniversal deformation of singularities and modules (2015). http://www.singular.uni-kl.de
  19. 19.
    Mumford, D.: Some footnotes to the work of C. P. Ramanujam. In: C. P. Ramanujam–A Tribute. Tata Institute of Fundamental Research Studies in Mathematics, vol. 8, pp. 247–262. Springer, Berlin, New York (1978)Google Scholar
  20. 20.
    Nakayama, N.: On smooth exceptional curves in threefolds. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37, 511–525 (1990)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pinkham, H.C.: Factorization of birational maps in dimension 3. In: Singularities, Part 2 (Arcata, CA, 1981), pp. 343–371. Proceedings of Symposia in Pure Mathematics, vol. 40. American Mathematical Society, Providence, RI (1983)Google Scholar
  22. 22.
    Reid, M.: Chapters on algebraic surfaces. In: Complex algebraic geometry (Park City, UT, 1993). IAS/Park City Mathematics Series, vol. 3, pp. 3–159. American Mathematical Society, Providence, RI (1997)Google Scholar
  23. 23.
    Riemenschneider, O.: Familien komplexer Räume mit streng pseudokonvexer spezieller Faser. Comment. Math. Helv. 51, 547–565 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. In: Singularities, Part 2 (Arcata, CA, 1981), pp. 513–536. Proceedings of Symposia in Pure Mathematics, vol. 40. American Mathematical Society, Providence, RI (1983)Google Scholar
  25. 25.
    Stevens, J.: Deformations of Singularities. Lecture Notes in Mathematics, vol. 1811. Springer, Berlin (2003)Google Scholar
  26. 26.
    Stevens, J.: Non-embeddable 1-convex manifolds. Ann. Inst. Fourier 64, 2205–2222 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Teissier, B.: The hunting of invariants in the geometry of discriminants. In: Real and Complex Singularities. Proceedings of Ninth Nordic Summer School/NAVF Symposium in Mathematics, Oslo, 1976), pp. 565–678. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)Google Scholar
  28. 28.
    Wagreich, P.: Elliptic singularities of surfaces. Am. J. Math. 92, 419–454 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wahl, J.M.: Equisingular deformations of normal surface singularities. I. Ann. Math. (2) 104, 325–356 (1976)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Matematik, Göteborgs universitet and Chalmers tekniska högskolaGöteborgSweden

Personalised recommendations