Milnor Fibre Homology via Deformation

  • Dirk SiersmaEmail author
  • Mihai Tibăr


In case of one-dimensional singular locus, we use deformations in order to get refined information about the Betti numbers of the Milnor fibre.


Betti numbers Milnor fibre Singularities One-dimensional singular set 

2010 Mathematics Subject Classification.

32S30 58K60 55R55 32S25 



Most of the research of this paper took place during a Research in Pairs of the authors at the Mathematisches Forschungsinstitut Oberwolfach in November 2015. Dirk Siersma and Mihai Tibăr thank the institute for the support and excellent atmosphere.


  1. 1.
    de Jong, T.: Some classes of line singularities. Math. Z. 198, 493–517 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Massey, D.B., Siersma, D.: Deformation of polar methods. Ann. Inst. Fourier (Grenoble) 42, 737–778 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Milnor, J.: Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, vol. 61. Princeton University Press, Princeton, NJ (1968)Google Scholar
  4. 4.
    Némethi, A., Szilàrd, À.: Milnor Fiber Boundary of a Non-isolated Surface Singularity. Lecture Notes in Mathematics, vol. 2037. Springer, Berlin (2012)Google Scholar
  5. 5.
    Randell, R.: On the topology of non-isolated singularities. In: Geometric Topology. Proceedings of 1977 Georgia Topology Conference, pp. 445–473. Academic, New York (1979)Google Scholar
  6. 6.
    Siersma, D.: Isolated line singularities. In: Singularities, Part 2 (Arcata, CA, 1981), pp. 485–496. Proceedings of Symposia in Pure Mathematics, vol. 40. American Mathematical Society, Providence, RI (1983)Google Scholar
  7. 7.
    Siersma, D.: Singularities with critical locus a 1-dimensional complete intersection and transversal type A 1. Topol. Appl. 27, 51–73 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Siersma, D.: Quasi-homogeneous singularities with transversal type A 1. In: Singularities (Iowa City, IA, 1986). Contemporary Mathematics, vol. 90, pp. 261–294. American Mathematical Society, Providence, RI (1989)Google Scholar
  9. 9.
    Siersma, D.: Variation mappings on singularities with a 1-dimensional critical locus. Topology 30 (3), 445–469 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Siersma, D.: The vanishing topology of non isolated singularities. In: New Developments in Singularity Theory, Cambridge, 2000. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 21, pp. 447–472. Kluwer, Dordrecht (2001)Google Scholar
  11. 11.
    Siersma, D., Tibăr, M.: Betti numbers of polynomials. Mosc. Math. J. 11 (3), 599–615 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Siersma, D., Tibăr, M.: Vanishing homology of projective hypersurfaces with 1-dimensional singularities. arXiv 1411.2640 (2014)Google Scholar
  13. 13.
    Steenbrink, J.H.M.: The spectrum of hypersurface singularities. Astérisque 179–180, 163–184 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Tibăr, M.: The vanishing neighbourhood of non-isolated singularities. Isr. J. Math. 157, 309–322 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    van Straten, D.: On a theorem of Greuel and Steenbrink. In: Decker, W., et al. (eds.) Singularities and Computer Algebra, pp. 353–364. Springer, New York (2017). ETCGoogle Scholar
  16. 16.
    Williams, K.J.: The Milnor fiber associated to an arrangement of hyperplanes. Dissertation, The University of Iowa, Iowa (2011)Google Scholar
  17. 17.
    Yomdin, I.N.: Complex surfaces with a one-dimensional set of singularities. Sibirsk. Mat. Z. 15, 1061–1082, 1181 (1974)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of MathematicsUtrecht UniversityUtrechtThe Netherlands
  2. 2.Université Lille, CNRS, UMR 8524 - Laboratoire Paul PainlevéLilleFrance

Personalised recommendations