A Method to Compute the General Neron Desingularization in the Frame of One-Dimensional Local Domains

  • Adrian Popescu
  • Dorin PopescuEmail author


An algorithmic proof of General Neron Desingularization is given here for one-dimensional local domains, and it is implemented in SINGULAR. Also a theorem recalling Greenberg’ strong approximation theorem is presented for one-dimensional Cohen–Macaulay local rings.


Regular morphisms Smooth morphisms Smoothing ring morphisms 

2010 Mathematics Subject Classification:

Primary 13B40 Secondary 14B25 13H05 13J15 



The support from the Department of Mathematics of the University of Kaiserslautern of the first author and the support from the project ID-PCE-2011-1023, granted by the Romanian National Authority for Scientific Research, CNCS - UEFISCDI of the second author are gratefully acknowledged. Both authors thank CIRM, Luminy who provided excellent conditions, and stimulative atmosphere in the main stage of our work.


  1. 1.
    André, M.: Cinq exposes sur la desingularisation. Handwritten manuscript Ecole Polytechnique Federale de Lausanne (1991)Google Scholar
  2. 2.
    Artin, M.: Algebraic approximation of structures over complete local rings. Publ. Math. IHES 36, 23–58 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 3-1-6—a computer algebra system for polynomial computations. (2012)
  4. 4.
    Elkik, R.: Solutions d’equations a coefficients dans un anneaux henselien. Ann. Sci. Ecole Norm. Super. 6, 553–604 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Greenberg, M.: Rational points in henselian discrete valuation rings. Publ. Math. IHES 31, 59–64 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grothendieck, A., Dieudonne, J.: Elements de geometrie algebrique, IV. Publ. Math. IHES 32 (1967)Google Scholar
  7. 7.
    Néron, A.: Modeles minimaux des varietes abeliennes sur les corps locaux et globaux. Publ. Math. IHES 21, 5–128 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Popescu, D.: General Neron desingularization. Nagoya Math. J. 100, 97–126 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Popescu, D.: General Neron desingularization and approximation. Nagoya Math. J. 104, 85–115 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Popescu, D.: Letter to the editor. General Neron desingularization and approximation. Nagoya Math. J. 118, 45–53 (1990)CrossRefzbMATHGoogle Scholar
  11. 11.
    Popescu, D.: Artin approximation. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 2, pp. 321–355. Elsevier, Amsterdam (2000)Google Scholar
  12. 12.
    Spivakovski, M.: A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms. J. Am. Math. Soc. 294, 381–444 (1999)Google Scholar
  13. 13.
    Swan, R.: Neron-Popescu desingularization. In: Kang, M. (ed.) Algebra and Geometry, pp. 135–192. International Press, Cambridge (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5University of BucharestBucharestRomania

Personalised recommendations