A Near-Field Aperture-Probe as an Optical Magnetic Source and Detector

  • Denitza DenkovaEmail author
Part of the Springer Theses book series (Springer Theses)


In the previous chapter we have shown that the lateral magnetic near-field distributions of different resonant modes in plasmonic structures can be mapped with a hollow-pyramid aperture SNOM. We have also discussed how the coupling between the probe and the metal bars leads to the obtained results. This chapter focuses on the underlying mechanism for mapping the lateral magnetic field with this circular aperture type probe. We suggest that such probe can be approximated by a lateral magnetic dipole source, which also allows its use as a detector for the lateral magnetic near-field. The equivalence of the reciprocal configurations when the probe is used as a source (illumination mode) and as a detector (collection mode) is experimentally demonstrated for a plasmonic nanobar sample. Verification for dielectric structures remains to be realized. The simplification of the probe to a simple magnetic dipole is extremely useful from a practical point of view, as it facilitates the simulations and the understanding of the near-field images.


Magnetic Dipole Collection Mode Plasmon Mode Dipole Source Metallic Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Liu, L.W. Fu, S. Kaiser, H. Schweizer, H. Giessen, Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008)CrossRefGoogle Scholar
  2. 2.
    C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, T. Scharf, Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum. Phys. Rev. Lett. 99, 017401 (2007)CrossRefADSGoogle Scholar
  3. 3.
    E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, F. Meseguer, Mirror-image-induced magnetic modes. ACS Nano 1, 664–668 (2013)CrossRefGoogle Scholar
  4. 4.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRefADSGoogle Scholar
  5. 5.
    C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)ADSGoogle Scholar
  6. 6.
    G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 30, 3198–3200 (2005)CrossRefADSGoogle Scholar
  7. 7.
    H.W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, Optical magnetic field mapping using a subwavelength aperture. Opt. Express 21, 5625–5633 (2013)CrossRefADSGoogle Scholar
  8. 8.
    B. le Feber, N. Rotenberg, D.M. Beggs, L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  10. 10.
    J.-J. Greffet, R. Carminati, Image formation in near-field optics. Prog. Surf. Sci. 56, 133 (1997)CrossRefADSGoogle Scholar
  11. 11.
    J. Sun, P. Carney, J.C. Schotland, Strong tip effects in near-field scanning optical tomography. J. Appl. Phys. 102, 103103 (2007)CrossRefADSGoogle Scholar
  12. 12.
    A. García-Etxarri, I. Romero, J.F. García de Abajo, R. Hillenbrand, J. Aizpurua, Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B 79, 125439 (2009)CrossRefADSGoogle Scholar
  13. 13.
    M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Witec Wissenschaftliche Instrumente und Technologie GmbH (2014).
  15. 15.
    H. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. 16.
    C.J. Bouwkamp, Diffraction theory. Rep. Prog. Phys. 17, 35 (1954)MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. 17.
    A. Drezet, J.C. Woehl, S. Huant, Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy. Phys. Rev. E 65, 046611 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Lumerical Solutions (2014).
  19. 19.
    P.-K. Wei, H.-L. Chou, Y.-R. Cheng, Y.-D. Yao, Near-field magneto-optical microscopy using surface-plasmon waves and the transverse magneto-optical Kerr effect. J. Appl. Phys. 98, 093904 (2005)Google Scholar
  20. 20.
    A. Drezet, M.J. Nasse, S. Huant, J.C. Woehl, The optical near-field of an aperture tip. EPL (Europhys. Lett.) 66, 41 (2004)CrossRefADSGoogle Scholar
  21. 21.
    L. Guestin, A.J.L. Adam, J.R. Knab, M. Nagel, P.C.M. Planken, Influence of the dielectric substrateon the terahertz electric near-field of a hole in a metal. Opt. Express 17, 17412–17425 (2009)Google Scholar
  22. 22.
    D. Denkova, N. Verellen, A.V. Silhanek, V.K. Valev, P. Van Dorpe, V.V. Moshchalkov, Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 7, 3168–3176 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge U. Press, 1999)Google Scholar
  24. 24.
    K. Imura, H. Okamoto, Reciprocity in scanning near-field optical microscopy: Illumination and collection modes of transmission measurements. Opt. Lett. 31, 1474–1476 (2006)CrossRefADSGoogle Scholar
  25. 25.
    E. Méndez, J.-J. Greffet, R. Carminati, On the equivalence between the illumination and collection modes of the scanning near-field optical microscope. Opt. Commun. 142, 7–13 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyInstitute for Nanoscale Physics and Chemistry, KU LeuvenLeuvenBelgium

Personalised recommendations