Imaging the Magnetic Near-Field of Plasmon Modes in Bar Antennas

  • Denitza DenkovaEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we show how the scanning near-field optical microscopy (SNOM) technique can be used to visualize the lateral magnetic near-fields of metallic nanostructures, namely gold bars. We present direct experimental maps of these fields by using hollow-pyramid aperture probe SNOM. The results are supported by numerical simulations in which we first simulate the fields of the probe and the bars separately. Then we simulate and discuss in details how the probe-sample interaction results in the effective formation of a lateral magnetic dipole. This allows obtaining optical contrast in the SNOM images corresponding to the lateral magnetic near-fields of the structures. We verify the results for different bar lengths and wavelengths, respectively different plasmon modes. The obtained specific relation of the bar length versus resonant wavelength (so called dispersion relation), allows to unambiguously confirm that the observed optical contrast is related to plasmonic effects.


Resonant Wavelength Field Profile Magnetic Field Component Electric Field Component Propagate Surface Plasmon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)CrossRefADSGoogle Scholar
  2. 2.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefADSGoogle Scholar
  3. 3.
    V. Giannini, A.I. Fernandez-Domínguez, S.C. Heck, S.A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011)Google Scholar
  4. 4.
    S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007)CrossRefADSGoogle Scholar
  5. 5.
    R. Zia, J.A. Schuller, M.L. Brongersma, Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys. Rev. B 74, 165415 (2006)CrossRefADSGoogle Scholar
  6. 6.
    V.K. Valev, D. Denkova, X. Zheng, A.I. Kuznetsov, C. Reinhardt, B.N. Chichkov, G. Tsutsumanova, E.J. Osley, V. Petkov, B. De Clercq, A.V. Silhanek, Y. Jeyaram, V. Volskiy, P.A. Warburton, G.A.E. Vandenbosch, S. Russev, O.A. Aktsipetrov, M. Ameloot, V.V. Moshchalkov, T. Verbiest, Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets. Adv. Mater. 24, OP29–OP35 (2012)Google Scholar
  7. 7.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A. Requicha, Local detection of eletromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)CrossRefADSGoogle Scholar
  8. 8.
    V.K. Valev, A.V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O.A. Aktsipetrov, G.A.E. Vandenbosch, M. Ameloot, V.V. Moshchalkov, T. Verbiest, U-shaped switches for optical information processing at the nanoscale. Small 7, 2573–2576 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, H. Giessen, 3D optical Yagi-Uda nanoantenna array. Nat. Commun. 2, 267 (2011)CrossRefADSGoogle Scholar
  10. 10.
    K.F. MacDonald, N.I. Zheludev, Active plasmonics: current status. Laser Photonics Rev. 4, 562–567 (2010)CrossRefGoogle Scholar
  11. 11.
    L. Yin, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, J. Hua, U. Welp, D.E. Brown, C.W. Kimball, Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005)CrossRefADSGoogle Scholar
  12. 12.
    I.I. Smolyaninov, Two-dimensional plasmonic metamaterials. Appl. Phys. A 87, 227–234 (2007)Google Scholar
  13. 13.
    V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007)CrossRefADSGoogle Scholar
  14. 14.
    N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)CrossRefGoogle Scholar
  15. 15.
    N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V.V. Moshchalkov, Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11, 391–397 (2011)CrossRefADSGoogle Scholar
  16. 16.
    M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)CrossRefGoogle Scholar
  17. 17.
    A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)CrossRefADSGoogle Scholar
  18. 18.
    T. Chung, S.-Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)CrossRefGoogle Scholar
  19. 19.
    M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332, 702 (2011)CrossRefADSGoogle Scholar
  20. 20.
    P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, G. Borghs, Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat. Photonics 3, 283–286 (2009)CrossRefADSGoogle Scholar
  21. 21.
    J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic and electric excitations in split ring resonators. Opt. Express 15, 17881–17890 (2007)Google Scholar
  22. 22.
    C.J. Tang, P. Zhan, Z.S. Cao, J. Pan, Z. Chen, Z.L. Wang, Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Phys. Rev. B 83, 041402 (2011)CrossRefADSGoogle Scholar
  23. 23.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)Google Scholar
  24. 24.
    C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315, 47–49 (2007)Google Scholar
  25. 25.
    T. Grosjean, M. Mivelle, F.I. Baida, G.W. Burr, U.C. Fischer, Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett. 11, 1009–1013 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Z. Gao, L. Shen, E. Li, L. Xu, Z. Wang, Cross-Diabolo nanoantenna for localizing and enhancing magnetic field with arbitrary polarization. J. Lightwave Technol. 30, 829–833 (2012)CrossRefADSGoogle Scholar
  27. 27.
    S. Koo, M.S. Kumar, J. Shin, D. Kim, N. Park, Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime. Phys. Rev. Lett. 103, 263901 (2009)CrossRefADSGoogle Scholar
  28. 28.
    H. Giessen, R. Vogelgesang, Glimpsing the weak magnetic field of light. Science 326, 529–530 (2009)Google Scholar
  29. 29.
    M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009)CrossRefADSGoogle Scholar
  30. 30.
    H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, D.-S. Kim, Bethe-hole polarization analyser for the magnetic vector of light. Nat. Commun. 2, 451 (2011)CrossRefADSGoogle Scholar
  31. 31.
    M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006)CrossRefADSGoogle Scholar
  32. 32.
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–468 (1873)CrossRefGoogle Scholar
  33. 33.
    L. Rayleigh, On the theory of optical images with special reference to the optical microscope. Phil. Mag. 5, 167–195 (1896)Google Scholar
  34. 34.
    E.J.R. Vesseur, R. de Waele, M. Kuttge, A. Polman, Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007)CrossRefADSGoogle Scholar
  35. 35.
    M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007)CrossRefADSGoogle Scholar
  36. 36.
    P. Ghenuche, S. Cherukulappurath, T.H. Taminiau, N.F. van Hulst, R. Quidant, Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008)CrossRefADSGoogle Scholar
  37. 37.
    J. Dorfmüller, R. Vogelgesang, T.R. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9, 2372–2377 (2009)CrossRefADSGoogle Scholar
  38. 38.
    K. Imura, T. Nagahara, H. Okamoto, Near-field opticalimaging of plasmon modes in gold nanorods. J. Chem. Phys. 122, 154701 (2005)CrossRefADSGoogle Scholar
  39. 39.
    R. Zia, M.L. Brongersma, Surface plasmon polariton analogue to Young’s double-slit experiment. Nat. Nanotechnol. 2, 426–429 (2007)Google Scholar
  40. 40.
    E.H. Synge, A suggested model for extending microscopic resolution into the ultra-microscopic region. Phil. Mag. 6, 356–362 (1928)Google Scholar
  41. 41.
    D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44, 651 (1984)CrossRefADSGoogle Scholar
  42. 42.
    L. Novotny, S.J. Stranick, Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem. 57, 303–331 (2006)Google Scholar
  43. 43.
    R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008)CrossRefADSGoogle Scholar
  44. 44.
    A. Dereux, C. Girard, J.-C. Weeber, Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775 (2000)Google Scholar
  45. 45.
    G. Colas des Francs, C. Girard, J.-C. Weeber, A. Dereux, Relationship between scanning near-field optical images and local density of photonic states. Chem. Phys. Lett. 345, 512–516 (2001)CrossRefADSGoogle Scholar
  46. 46.
    E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62, 10504 (2000)CrossRefADSGoogle Scholar
  47. 47.
    J.-S. Bouillard, S. Vilain, W. Dickson, A.V. Zayats, Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics. Opt. Express 18, 16513 (2010)CrossRefADSGoogle Scholar
  48. 48.
    S.I. Bozhevolnyi, Near-field mapping of surface polariton fields. J. Microsc. 202, 313–319 (2001)Google Scholar
  49. 49.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)zbMATHGoogle Scholar
  50. 50.
    R.L. Olmon, M. Rang, P.M. Krenz, B.A. Lail, L.V. Saraf, G.D. Boreman, M.B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010)CrossRefADSGoogle Scholar
  51. 51.
    T. Grosjean, I.A. Ibrahim, M.A. Suarez, G.W. Burr, M. Mivelle, D. Charraut, Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010)CrossRefADSGoogle Scholar
  52. 52.
    M. Seo, A.J.L. Adam, J.H. Kang, J. Lee, S.C. Jeoung, Q.H. Park, P.C.M. Planken, D.S. Kim, Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and poynting vectors. Opt. Express 15, 11781 (2007)CrossRefADSGoogle Scholar
  53. 53.
    A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009)CrossRefADSGoogle Scholar
  54. 54.
    E. Verhagen, J.A. Dionne, L.K. Kuipers, H.A. Atwater, A. Polman, Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Lett. 8, 2925–2929 (2008)CrossRefADSGoogle Scholar
  55. 55.
    M. Celebrano, M. Zavelani-Rossi, P. Biagioni, D. Polli, M. Finazzi,L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, P. Royer, and P.M. Adam, Mapping local field distribution at metal nanostructures by near-field second-harmonic generation. In: Proceedings of the SPIE, plasmonics: metallic nanostructures and their optical properties V 6641, 66411E–1 2007Google Scholar
  56. 56.
    Witec Wissenschaftliche Instrumente und Technologie GmbH (2014),
  57. 57.
    J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett. 10, 3596–3603 (2010)CrossRefADSGoogle Scholar
  58. 58.
    B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000)CrossRefADSGoogle Scholar
  59. 59.
    K. Imura, T. Nagahara, H. Okamoto, Characteristic near-field spectra of single gold nanoparticles. Chem. Phys. Lett. 400, 500–505 (2004)Google Scholar
  60. 60.
    Y. Ekinci, A. Christ, M. Agio, O.J.F. Martin, H.H. Solak, J.F. Löffler, Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt. Express 16, 13287 (2008)CrossRefADSGoogle Scholar
  61. 61.
    A. Dmitriev, T. Pakizeh, M. Käll, D.S. Sutherland, Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. Small 3, 294–299 (2007)CrossRefGoogle Scholar
  62. 62.
    J.A. Porto, P. Johansson, S.P. Apell, T. López-Rios, Resonance shift effects in apertureless scanning near-field optical microscopy. Phys. Rev. B 67, 085409 (2003)CrossRefADSGoogle Scholar
  63. 63.
    A. García-Etxarri, I. Romero, J.F. García de Abajo, R. Hillenbrand, J. Aizpurua, Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes. Phys. Rev. B 79, 125439 (2009)CrossRefADSGoogle Scholar
  64. 64.
    G. Schider, J.R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F.R. Aussenegg, W.L. Schaich, I. Puscasu, B. Monacelli, G. Boreman, Plasmon dispersion relation of Au and Ag nanowires. Phys. Rev. B 68, 155427 (2003)CrossRefADSGoogle Scholar
  65. 65.
    L. Novotny, Effective wavelength scaling for opticalantennas. Phys. Rev. Lett. 98, 266802 (2007)CrossRefADSGoogle Scholar
  66. 66.
    F. Neubrech, D. Weber, R. Lovrincic, A. Pucci, M. Lopes, T. Toury, M. Lamy de la Chapelle, Resonances of individual lithographic gold nanowires in the infrared. Appl. Phys. Lett. 93, 163105 (2008)CrossRefADSGoogle Scholar
  67. 67.
    R.L. Olmon, P.M. Krenz, A.C. Jones, G.D. Boreman, M.B. Raschke, Near-field imaging of optical antenna modes in the mid-infrared. Opt. Express 16, 20295 (2008)CrossRefADSGoogle Scholar
  68. 68.
    S. Vignolini, F. Intonti, F. Riboli, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, D.S. Wiersma, M. Gurioli, Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010)CrossRefADSGoogle Scholar
  69. 69.
    M. Burresi, T. Kampfrath, D. van Oosten, J.C. Prangsma, B.S. Song, S. Noda, L. Kuipers, Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010)CrossRefADSGoogle Scholar
  70. 70.
    M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, G. Cerullo, Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. Rev. Sci. Instrum. 80, 033704 (2009)CrossRefADSGoogle Scholar
  71. 71.
    X. Heng, X. Cui, D.W. Knapp, J. Wu, Z. Yaqoob, E.J. McDowell, D. Psaltis, C. Yang, Characterization of light collection through a subwavelength aperture from a point source. Opt. Express 14, 10410–10425 (2006)CrossRefADSGoogle Scholar
  72. 72.
    Lumerical Solutions (2014),
  73. 73.
    P.B. Johnson, R.W. Christy, Optical constants of thenoble metals. Phys. Rev. B 6, 4370–4379 (1972)CrossRefADSGoogle Scholar
  74. 74.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 3rd edn. (CRC, Boca Raton, 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyInstitute for Nanoscale Physics and Chemistry, KU LeuvenLeuvenBelgium

Personalised recommendations