• Denitza DenkovaEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we first describe the interaction of light with metallic nanostructures and the consequently induced plasmonic effects in the structures. The most important characteristics of such interaction and their significance for various practical applications are discussed. Then, we point out the difficulties related to the experimental characterization of plasmonic effects. In the second section we explain how the scanning near-field optical microscope (SNOM) can overcome those difficulties. The practical experimental realization of such microscope and different variations of the setup are further discussed. In the last section of the chapter we focus on the main subject of this thesis—the imaging of the magnetic field of light. We point out the necessity and the main difficulties related to such measurements. Then, we describe the experimental setup which we use for this purpose.


Surface Enhance Raman Scattering Diffraction Limit Optical Fiber Probe Plasmonic Device Scan Electron Microscopy View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)Google Scholar
  2. 2.
    L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)CrossRefADSGoogle Scholar
  3. 3.
    M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)CrossRefGoogle Scholar
  4. 4.
    N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V.V. Moshchalkov, Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11, 391–397 (2011)CrossRefADSGoogle Scholar
  5. 5.
    T. Chung, S.-Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)CrossRefGoogle Scholar
  6. 6.
    D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1 (1977)CrossRefGoogle Scholar
  7. 7.
    M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215 (1977)CrossRefGoogle Scholar
  8. 8.
    M. Stockman, Electromagnetic theory of SERS. Top. Appl. Phys. 103, 47–65 (2006)CrossRefGoogle Scholar
  9. 9.
    E. Le Ru, P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009)Google Scholar
  10. 10.
    M. Haurylau, G. Chen, H. Chen, J. Zhang, N.A. Nelson, D.H. Albonesi, E.G. Friedman, P.M. Fauchet, On-chip optical interconnect roadmap: challenges and critical directions. IEEE J. Sel. Top. Quant. Electron. 12, 1699 (2006)CrossRefGoogle Scholar
  11. 11.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006)CrossRefADSGoogle Scholar
  12. 12.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefADSGoogle Scholar
  13. 13.
    K.F. MacDonald, N.I. Zheludev, Active plasmonics: current status. Laser Photonics Rev. 4, 562–567 (2010)CrossRefGoogle Scholar
  14. 14.
    V.K. Valev, A.V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O.A. Aktsipetrov, G.A.E. Vandenbosch, M. Ameloot, V.V. Moshchalkov, T. Verbiest, U-shaped switches for optical information processing at the nanoscale. Small 7, 2573–2576 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Tserkezis, N. Papanikolaou, G. Gantzounis, N. Stefanou, Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures. Phys. Rev. B 78, 165114 (2008)CrossRefADSGoogle Scholar
  16. 16.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999)CrossRefADSGoogle Scholar
  17. 17.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509 (1968)CrossRefADSGoogle Scholar
  18. 18.
    C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315, 47–49 (2007)CrossRefGoogle Scholar
  19. 19.
    V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007)CrossRefADSGoogle Scholar
  20. 20.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  22. 22.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. 23.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)CrossRefADSGoogle Scholar
  24. 24.
    U. Leonhardt, Optical conformal mapping. Science 312, 1777 (2006)MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012)CrossRefADSGoogle Scholar
  26. 26.
    M. Pelton, G.W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013)Google Scholar
  27. 27.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)Google Scholar
  28. 28.
    M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009)CrossRefADSGoogle Scholar
  29. 29.
    H.W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, Optical magnetic field mapping using a subwavelength aperture. Opt. Express 21, 5625–5633 (2013)CrossRefADSGoogle Scholar
  30. 30.
    B. le Feber, N. Rotenberg, D.M. Beggs, L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2013)CrossRefGoogle Scholar
  31. 31.
    R.L. Olmon, M. Rang, P.M. Krenz, B.A. Lail, L.V. Saraf, G.D. Boreman, M.B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010)CrossRefADSGoogle Scholar
  32. 32.
    D. Denkova, N. Verellen, A.V. Silhanek, V.K. Valev, P. Van Dorpe, V.V. Moshchalkov, Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 7, 3168–3176 (2013)CrossRefGoogle Scholar
  33. 33.
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–468 (1873)CrossRefGoogle Scholar
  34. 34.
    J. Huisken, D.Y.R. Stainier, Selective plane illumination microscopy techniques in developmental biology. Development 136, 1963–1975 (2009)CrossRefGoogle Scholar
  35. 35.
    D.B. Murphy, M.W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Blackwell, 2012)Google Scholar
  36. 36.
    S.W. Hell, R. Schmidt, A. Egner, Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nat. Photonics 3, 381–387 (2009)CrossRefADSGoogle Scholar
  37. 37.
    X. Zhuang, Nano-imaging with STORM. Nat. Photonics 3, 365–367 (2009)Google Scholar
  38. 38.
    R. Heintzmann, M.G.L. Gustafsson, Subdiffraction resolution in continuous samples. Nat. Photonics 3, 362–364 (2009)CrossRefADSGoogle Scholar
  39. 39.
    S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3, 288–394 (2009)CrossRefGoogle Scholar
  40. 40.
    E.H. Synge, A suggested model for extending microscopic resolution into the ultra-microscopic region. Phil. Mag. 6, 356–362 (1928)CrossRefGoogle Scholar
  41. 41.
    E.A. Ash, G. Nicholls, Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972)CrossRefADSGoogle Scholar
  42. 42.
    D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44, 651 (1984)CrossRefADSGoogle Scholar
  43. 43.
    B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000)CrossRefADSGoogle Scholar
  44. 44.
    J.-J. Greffet, R. Carminati, Image formation in near-field optics. Prog. Surf. Sci. 56, 133 (1997)CrossRefADSGoogle Scholar
  45. 45.
    R. Hillenbrand, F. Keilmann, Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80, 25 (2002)CrossRefADSGoogle Scholar
  46. 46.
    A. Bek, R. Vogelgesang, K. Kern, Apertureless scanning near field optical microscope with sub-10 nm resolution. Rev. Sci. Instrum. 77, 043703 (2006)CrossRefADSGoogle Scholar
  47. 47.
    L. Rayleigh, On the theory of optical images with special reference to the optical microscope. Phil. Mag. 5, 167–195 (1896)CrossRefzbMATHGoogle Scholar
  48. 48.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)Google Scholar
  49. 49.
  50. 50.
    A. Rudge, K. Milne, A. Olver, P. Knight (eds.), The Handbook of Antenna Design, vol. 1 (Peter Peregrinus Ltd., London, UK, 1982)Google Scholar
  51. 51.
    G.B. Airy, On the diffraction of an object-glass with circular aperture. Camb. Phil. Soc. Trans. 5, 283–291 (1835)ADSGoogle Scholar
  52. 52.
    H. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)MathSciNetCrossRefzbMATHADSGoogle Scholar
  53. 53.
    C.J. Bouwkamp, Diffraction theory. Rep. Prog. Phys. 17, 35 (1954)MathSciNetCrossRefzbMATHADSGoogle Scholar
  54. 54.
    C. Obermüller, K. Karrai, G. Kolb, G. Abstreiter, Transmitted radiation through a subwavelength-sized tapered optical fiber tip. Ultramicroscopy 61, 171–177 (1995)CrossRefGoogle Scholar
  55. 55.
    A. Lewis, M. Isaacson, A. Harootunian, A. Murray, Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 13, 227–232 (1984)CrossRefGoogle Scholar
  56. 56.
    K. Imura, H. Okamoto, Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements. Opt. Lett. 31, 1474–1476 (2006)CrossRefADSGoogle Scholar
  57. 57.
    E. Méndez, J.-J. Greffet, R. Carminati, On the equivalence between the illumination and collection modes of the scanning near-field optical microscope. Opt. Commun. 142, 7–13 (1997)CrossRefADSGoogle Scholar
  58. 58.
    D. Denkova, N. Verellen, A.V. Silhanek, P. Van Dorpe, V.V. Moshchalkov, Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector (2014)Google Scholar
  59. 59.
    Cavendish Instruments SNOM Information (2014),
  60. 60.
    D. Richards, Near-field microscopy: throwing light on the nanoworld. Phil. Trans. R. Soc. Lond. A 361, 2843–2857 (2003)CrossRefADSGoogle Scholar
  61. 61.
  62. 62.
    Nanonics SNOM probes (2014),
  63. 63.
    Witec Wissenschaftliche Instrumente und Technologie GmbH (2014),
  64. 64.
    The atomic force microscopy resource library, (2014)
  65. 65.
    M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, G. Cerullo, Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. Rev. Sci. Instrum. 80, 033704 (2009)CrossRefADSGoogle Scholar
  66. 66.
    F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623 (1994)CrossRefADSGoogle Scholar
  67. 67.
    Y. Inouye, S. Kawata, Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159 (1994)CrossRefADSGoogle Scholar
  68. 68.
    A. García-Etxarri, I. Romero, J.F. García de Abajo, R. Hillenbrand, J. Aizpurua, Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes. Phys. Rev. B 79, 125439 (2009)CrossRefADSGoogle Scholar
  69. 69.
    M. Schnell, A. García-Etxarri, J. Alkorta, J. Aizpurua, R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524–3528 (2010)CrossRefADSGoogle Scholar
  70. 70.
    L. Novotny, S.J. Stranick, Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem. 57, 303–331 (2006)CrossRefADSGoogle Scholar
  71. 71.
    J. Michaelis, C. Hettich, J. Mlynek, V. Sandoghdar, Optical microscopy using a single-molecule light source. Nature 405, 325 (2000)CrossRefADSGoogle Scholar
  72. 72.
    Y. Sonnefraud, N. Chevalier, J.F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M.T. Burnett, W. Ding, S.A. Maier, Near-field optical imaging with a CdSe single nanocrystal-based active tip. Opt. Express 14, 10596 (2006)CrossRefADSGoogle Scholar
  73. 73.
    S. Akamine, H. Kuwano, H. Yamada, Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode. Appl. Phys. Lett. 68, 579 (1996)CrossRefADSGoogle Scholar
  74. 74.
    H.G. Frey, F. Keilmann, A. Kriele, R. Guckenberger, Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Appl. Phys. Lett. 81, 5030 (2002)CrossRefADSGoogle Scholar
  75. 75.
    Y. Jia, H. Li, B. Zhang, X. Wei, Z. Zhang, Z. Liu, Y. Xu, Development of functional nanoprobes for optical near-field characterization. J. Phys. Condens. Matter 22, 3342218 (2010)Google Scholar
  76. 76.
    E.J. Sánchez, L. Novotny, X.S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014 (1999)CrossRefADSGoogle Scholar
  77. 77.
    A.V. Zayats, V. Sandoghdar, Apertureless scanning near-field second-harmonic microscopy. Opt. Commun. 178, 245 (2000)CrossRefADSGoogle Scholar
  78. 78.
    B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny, Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492 (1997)CrossRefADSGoogle Scholar
  79. 79.
    D. Bonnell, Scanning Probe Microscopy and Spectroscopy—Theory, Techniques and Applications (Wiley, 2001)Google Scholar
  80. 80.
    C. Girard, O. Martin, A. Dereux, Molecular lifetime changes induced by nanometer scale optical fields. Phys. Rev. Lett. 75, 3098 (1995)CrossRefADSGoogle Scholar
  81. 81.
    A.H. La Rosa, B.I. Yakobson, H.D. Hallen, Origins and effects of thermal processes on near-field optical probes. Appl. Phys. Lett. 67, 2597 (1995)CrossRefADSGoogle Scholar
  82. 82.
    K. Imura, T. Nagahara, H. Okamoto, Near-field optical imaging of plasmon modes in gold nanorods. J. Chem. Phys. 122, 154701 (2005)CrossRefADSGoogle Scholar
  83. 83.
    A. Dereux, C. Girard, J.-C. Weeber, Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775 (2000)CrossRefADSGoogle Scholar
  84. 84.
    G. Colas des Francs, C. Girard, J.-C. Weeber, A. Dereux, Relationship between scanning near-field optical images and local density of photonic states. Chem. Phys. Lett. 345, 512–516 (2001)Google Scholar
  85. 85.
    E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62, 10504 (2000)CrossRefADSGoogle Scholar
  86. 86.
    J.-S. Bouillard, S. Vilain, W. Dickson, A.V. Zayats, Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics. Opt. Express 18, 16513 (2010)CrossRefADSGoogle Scholar
  87. 87.
    S.I. Bozhevolnyi, Near-field mapping of surface polariton fields. J. Microsc. 202, 313–319 (2001)MathSciNetCrossRefGoogle Scholar
  88. 88.
    A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009)CrossRefADSGoogle Scholar
  89. 89.
    T. Grosjean, I.A. Ibrahim, M.A. Suarez, G.W. Burr, M. Mivelle, D. Charraut, Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010)CrossRefADSGoogle Scholar
  90. 90.
    M. Seo, A.J.L. Adam, J.H. Kang, J. Lee, S.C. Jeoung, Q.H. Park, P.C.M. Planken, D.S. Kim, Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. Opt. Express 15, 11781 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyInstitute for Nanoscale Physics and Chemistry, KU LeuvenLeuvenBelgium

Personalised recommendations