Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 586 Accesses

Abstract

In this chapter, we first describe the interaction of light with metallic nanostructures and the consequently induced plasmonic effects in the structures. The most important characteristics of such interaction and their significance for various practical applications are discussed. Then, we point out the difficulties related to the experimental characterization of plasmonic effects. In the second section we explain how the scanning near-field optical microscope (SNOM) can overcome those difficulties. The practical experimental realization of such microscope and different variations of the setup are further discussed. In the last section of the chapter we focus on the main subject of this thesis—the imaging of the magnetic field of light. We point out the necessity and the main difficulties related to such measurements. Then, we describe the experimental setup which we use for this purpose.

The results presented in this section are based on and reproduced with permission from:

D. Denkova, N. Verellen, A.V. Silhanek, V.K. Valev, P. Van Dorpe, V.V. Moshchalkov

Mapping magnetic near-field distributions of plasmonic nanoantennas

ACS Nano 7, 3168 (2013).

Copyright © 2013, American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  2. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  3. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)

    Article  Google Scholar 

  4. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V.V. Moshchalkov, Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11, 391–397 (2011)

    Article  ADS  Google Scholar 

  5. T. Chung, S.-Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)

    Article  Google Scholar 

  6. D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1 (1977)

    Article  Google Scholar 

  7. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215 (1977)

    Article  Google Scholar 

  8. M. Stockman, Electromagnetic theory of SERS. Top. Appl. Phys. 103, 47–65 (2006)

    Article  Google Scholar 

  9. E. Le Ru, P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009)

    Google Scholar 

  10. M. Haurylau, G. Chen, H. Chen, J. Zhang, N.A. Nelson, D.H. Albonesi, E.G. Friedman, P.M. Fauchet, On-chip optical interconnect roadmap: challenges and critical directions. IEEE J. Sel. Top. Quant. Electron. 12, 1699 (2006)

    Article  Google Scholar 

  11. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  12. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  13. K.F. MacDonald, N.I. Zheludev, Active plasmonics: current status. Laser Photonics Rev. 4, 562–567 (2010)

    Article  Google Scholar 

  14. V.K. Valev, A.V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O.A. Aktsipetrov, G.A.E. Vandenbosch, M. Ameloot, V.V. Moshchalkov, T. Verbiest, U-shaped switches for optical information processing at the nanoscale. Small 7, 2573–2576 (2011)

    Article  Google Scholar 

  15. C. Tserkezis, N. Papanikolaou, G. Gantzounis, N. Stefanou, Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures. Phys. Rev. B 78, 165114 (2008)

    Article  ADS  Google Scholar 

  16. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  17. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  18. C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315, 47–49 (2007)

    Article  Google Scholar 

  19. V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007)

    Article  ADS  Google Scholar 

  20. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  21. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  22. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  24. U. Leonhardt, Optical conformal mapping. Science 312, 1777 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012)

    Article  ADS  Google Scholar 

  26. M. Pelton, G.W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013)

    Google Scholar 

  27. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)

    Google Scholar 

  28. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009)

    Article  ADS  Google Scholar 

  29. H.W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, Optical magnetic field mapping using a subwavelength aperture. Opt. Express 21, 5625–5633 (2013)

    Article  ADS  Google Scholar 

  30. B. le Feber, N. Rotenberg, D.M. Beggs, L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2013)

    Article  Google Scholar 

  31. R.L. Olmon, M. Rang, P.M. Krenz, B.A. Lail, L.V. Saraf, G.D. Boreman, M.B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010)

    Article  ADS  Google Scholar 

  32. D. Denkova, N. Verellen, A.V. Silhanek, V.K. Valev, P. Van Dorpe, V.V. Moshchalkov, Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 7, 3168–3176 (2013)

    Article  Google Scholar 

  33. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–468 (1873)

    Article  Google Scholar 

  34. J. Huisken, D.Y.R. Stainier, Selective plane illumination microscopy techniques in developmental biology. Development 136, 1963–1975 (2009)

    Article  Google Scholar 

  35. D.B. Murphy, M.W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Blackwell, 2012)

    Google Scholar 

  36. S.W. Hell, R. Schmidt, A. Egner, Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nat. Photonics 3, 381–387 (2009)

    Article  ADS  Google Scholar 

  37. X. Zhuang, Nano-imaging with STORM. Nat. Photonics 3, 365–367 (2009)

    Google Scholar 

  38. R. Heintzmann, M.G.L. Gustafsson, Subdiffraction resolution in continuous samples. Nat. Photonics 3, 362–364 (2009)

    Article  ADS  Google Scholar 

  39. S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3, 288–394 (2009)

    Article  Google Scholar 

  40. E.H. Synge, A suggested model for extending microscopic resolution into the ultra-microscopic region. Phil. Mag. 6, 356–362 (1928)

    Article  Google Scholar 

  41. E.A. Ash, G. Nicholls, Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972)

    Article  ADS  Google Scholar 

  42. D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44, 651 (1984)

    Article  ADS  Google Scholar 

  43. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000)

    Article  ADS  Google Scholar 

  44. J.-J. Greffet, R. Carminati, Image formation in near-field optics. Prog. Surf. Sci. 56, 133 (1997)

    Article  ADS  Google Scholar 

  45. R. Hillenbrand, F. Keilmann, Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80, 25 (2002)

    Article  ADS  Google Scholar 

  46. A. Bek, R. Vogelgesang, K. Kern, Apertureless scanning near field optical microscope with sub-10 nm resolution. Rev. Sci. Instrum. 77, 043703 (2006)

    Article  ADS  Google Scholar 

  47. L. Rayleigh, On the theory of optical images with special reference to the optical microscope. Phil. Mag. 5, 167–195 (1896)

    Article  MATH  Google Scholar 

  48. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  49. Molecular Expressions (2014), http://micro.magnet.fsu.edu/primer/anatomy/numaperture.html

  50. A. Rudge, K. Milne, A. Olver, P. Knight (eds.), The Handbook of Antenna Design, vol. 1 (Peter Peregrinus Ltd., London, UK, 1982)

    Google Scholar 

  51. G.B. Airy, On the diffraction of an object-glass with circular aperture. Camb. Phil. Soc. Trans. 5, 283–291 (1835)

    ADS  Google Scholar 

  52. H. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. C.J. Bouwkamp, Diffraction theory. Rep. Prog. Phys. 17, 35 (1954)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. C. Obermüller, K. Karrai, G. Kolb, G. Abstreiter, Transmitted radiation through a subwavelength-sized tapered optical fiber tip. Ultramicroscopy 61, 171–177 (1995)

    Article  Google Scholar 

  55. A. Lewis, M. Isaacson, A. Harootunian, A. Murray, Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 13, 227–232 (1984)

    Article  Google Scholar 

  56. K. Imura, H. Okamoto, Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements. Opt. Lett. 31, 1474–1476 (2006)

    Article  ADS  Google Scholar 

  57. E. Méndez, J.-J. Greffet, R. Carminati, On the equivalence between the illumination and collection modes of the scanning near-field optical microscope. Opt. Commun. 142, 7–13 (1997)

    Article  ADS  Google Scholar 

  58. D. Denkova, N. Verellen, A.V. Silhanek, P. Van Dorpe, V.V. Moshchalkov, Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector (2014)

    Google Scholar 

  59. Cavendish Instruments SNOM Information (2014), http://lamp.tu-graz.ac.at/hadley/nanoscience/week3/3.html

  60. D. Richards, Near-field microscopy: throwing light on the nanoworld. Phil. Trans. R. Soc. Lond. A 361, 2843–2857 (2003)

    Article  ADS  Google Scholar 

  61. NanoScan Technology (2014), http://www.nanoscantech.ru/en/products/spm/spm-151.html

  62. Nanonics SNOM probes (2014), http://www.scientec.fr

  63. Witec Wissenschaftliche Instrumente und Technologie GmbH (2014), http://www.witec.de

  64. The atomic force microscopy resource library, (2014) http://www.afmuniversity.org

  65. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, G. Cerullo, Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. Rev. Sci. Instrum. 80, 033704 (2009)

    Article  ADS  Google Scholar 

  66. F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623 (1994)

    Article  ADS  Google Scholar 

  67. Y. Inouye, S. Kawata, Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159 (1994)

    Article  ADS  Google Scholar 

  68. A. GarcĂ­a-Etxarri, I. Romero, J.F. GarcĂ­a de Abajo, R. Hillenbrand, J. Aizpurua, Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes. Phys. Rev. B 79, 125439 (2009)

    Article  ADS  Google Scholar 

  69. M. Schnell, A. García-Etxarri, J. Alkorta, J. Aizpurua, R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524–3528 (2010)

    Article  ADS  Google Scholar 

  70. L. Novotny, S.J. Stranick, Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem. 57, 303–331 (2006)

    Article  ADS  Google Scholar 

  71. J. Michaelis, C. Hettich, J. Mlynek, V. Sandoghdar, Optical microscopy using a single-molecule light source. Nature 405, 325 (2000)

    Article  ADS  Google Scholar 

  72. Y. Sonnefraud, N. Chevalier, J.F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M.T. Burnett, W. Ding, S.A. Maier, Near-field optical imaging with a CdSe single nanocrystal-based active tip. Opt. Express 14, 10596 (2006)

    Article  ADS  Google Scholar 

  73. S. Akamine, H. Kuwano, H. Yamada, Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode. Appl. Phys. Lett. 68, 579 (1996)

    Article  ADS  Google Scholar 

  74. H.G. Frey, F. Keilmann, A. Kriele, R. Guckenberger, Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Appl. Phys. Lett. 81, 5030 (2002)

    Article  ADS  Google Scholar 

  75. Y. Jia, H. Li, B. Zhang, X. Wei, Z. Zhang, Z. Liu, Y. Xu, Development of functional nanoprobes for optical near-field characterization. J. Phys. Condens. Matter 22, 3342218 (2010)

    Google Scholar 

  76. E.J. Sánchez, L. Novotny, X.S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  77. A.V. Zayats, V. Sandoghdar, Apertureless scanning near-field second-harmonic microscopy. Opt. Commun. 178, 245 (2000)

    Article  ADS  Google Scholar 

  78. B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny, Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492 (1997)

    Article  ADS  Google Scholar 

  79. D. Bonnell, Scanning Probe Microscopy and Spectroscopy—Theory, Techniques and Applications (Wiley, 2001)

    Google Scholar 

  80. C. Girard, O. Martin, A. Dereux, Molecular lifetime changes induced by nanometer scale optical fields. Phys. Rev. Lett. 75, 3098 (1995)

    Article  ADS  Google Scholar 

  81. A.H. La Rosa, B.I. Yakobson, H.D. Hallen, Origins and effects of thermal processes on near-field optical probes. Appl. Phys. Lett. 67, 2597 (1995)

    Article  ADS  Google Scholar 

  82. K. Imura, T. Nagahara, H. Okamoto, Near-field optical imaging of plasmon modes in gold nanorods. J. Chem. Phys. 122, 154701 (2005)

    Article  ADS  Google Scholar 

  83. A. Dereux, C. Girard, J.-C. Weeber, Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775 (2000)

    Article  ADS  Google Scholar 

  84. G. Colas des Francs, C. Girard, J.-C. Weeber, A. Dereux, Relationship between scanning near-field optical images and local density of photonic states. Chem. Phys. Lett. 345, 512–516 (2001)

    Google Scholar 

  85. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62, 10504 (2000)

    Article  ADS  Google Scholar 

  86. J.-S. Bouillard, S. Vilain, W. Dickson, A.V. Zayats, Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics. Opt. Express 18, 16513 (2010)

    Article  ADS  Google Scholar 

  87. S.I. Bozhevolnyi, Near-field mapping of surface polariton fields. J. Microsc. 202, 313–319 (2001)

    Article  MathSciNet  Google Scholar 

  88. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009)

    Article  ADS  Google Scholar 

  89. T. Grosjean, I.A. Ibrahim, M.A. Suarez, G.W. Burr, M. Mivelle, D. Charraut, Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010)

    Article  ADS  Google Scholar 

  90. M. Seo, A.J.L. Adam, J.H. Kang, J. Lee, S.C. Jeoung, Q.H. Park, P.C.M. Planken, D.S. Kim, Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. Opt. Express 15, 11781 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denitza Denkova .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Denkova, D. (2016). Introduction. In: Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28793-5_1

Download citation

Publish with us

Policies and ethics