Skip to main content

Nanodiamonds: From Synthesis and Purification to Deposition Techniques, Hybrids Fabrication and Applications

  • Chapter
  • First Online:
Carbon Nanoparticles and Nanostructures

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

The present chapter summarizes the recent advances in the production and the purification methods of nanodiamonds. The different strategies for seeding and patterning of surfaces are detailed. First reports of hybrids based on nanodiamonds are included like core shell particles or decoration with carbon dots or metallic atoms. Finally, an overview of applications for composites and nanomedicine is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater. 16, 725–729 (2007). doi:10.1016/j.diamond.2006.11.010

    Article  Google Scholar 

  2. D. Adams, A.C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18, 177–180 (2009). doi:10.1016/j.diamond.2008.10.035

    Article  Google Scholar 

  3. M.V. Baidakova, Y.A. Kukushkina, A.A. Sitnikova, M.A. Yagovkina, D.A. Kinlenko, V.V. Sokolov, M.S. Shestakov, A.Y. Vul’, B. Zousman, O. Levinson, Structure of nanodiamonds prepared by laser synthesis. Phys. Solid State 55, 1747–1753 (2013). doi:10.1134/S1063783413080027

    Article  Google Scholar 

  4. K.V. Volkov, V.V. Danilenko, V.I. Elin, Synthesis of diamond from the carbon in the detonation products of explosives. Combustion Explosion and Shock waves 26, 366–368 (1990). doi:10.1007/BF00751383

    Article  Google Scholar 

  5. V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. Solid State 46, 611–615 (2004). doi:10.1134/1.1711434

    Article  Google Scholar 

  6. S.S. Batsanov, A.N. Osavchuk, S.P. Naumov, A.E. Efimov, B.G. Mendis, D.C. Apperley, A.S. Batsanov, Synthesis and properties of hydrogen-free detonation diamond. Propellants Explos. Pyrotech. 35, 1–8 (2010). doi:10.1002/prep.201400039

    Google Scholar 

  7. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotech. 7, 11–23 (2012). doi:10.1038/NNANO.2011.209

    Article  Google Scholar 

  8. A.L. Vereshchagin, E.A. Petrov, G.V. Sakovich et al., U.S. Patent No. 591.655, 1999

    Google Scholar 

  9. V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76, 339–360 (2007). WOS:000247118100004

    Google Scholar 

  10. V. Pichot, M. Comet, B. Risse, D. Spitzer, Detonation of nanosized explosive: new mechanistic model for nanodiamond formation. Diam. Relat. Mater. 54, 59–63 (2015). doi:10.1016/j.diamond.2014.09.013

    Google Scholar 

  11. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamond. Nature 176, 51 (1955). doi:10.1038/176051a0

    Article  Google Scholar 

  12. H.P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Preparation of diamond. Nature 184, 1094 (1959). doi:10.1038/1841094a0

    Article  Google Scholar 

  13. R.C. Burns, J.O. Hansen, R.A. Spits, M. Sibanda, C.M. Welbourn, D.L. Welch, Growth of high purity large diamond crystals. Diam. Relat. Mater. 8, 1433 (1999). doi:10.1016/S0925-9635(99)00042-4

    Article  Google Scholar 

  14. H. Kanda, M. Akaishi, S. Yamaoka, Synthesis of diamond with the highest nitrogen concentration. Diam. Relat. Mater. 8, 1441 (1999). doi:10.1016/S0925-9635(99)00022-9

    Article  Google Scholar 

  15. A. Dobrinets, V.G. Vins, A.M. Zaitev, HPHT-Treated Diamonds, Springer series in Material Science, vol 181 (Springer, Berlin, 2013). doi:10.1007/978-3-642-37490-6_1

    Google Scholar 

  16. V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, S.A. Terentiev, A.N. Semenova, V.D. Blank, Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 35, 19–23 (2013). doi:10.1016/j.diamond.2013.02.011

    Article  Google Scholar 

  17. J.C. Angus, H.A. Will, W.S. Stanko, Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915 (1968). doi:10.1063/1.1656693

    Article  Google Scholar 

  18. J.C. Angus, C.C. Hayman, Low pressure metastable growth of diamond and diamond like phases. Science 241, 913–921 (1988). doi:10.1126/science.241.4868.913

    Article  Google Scholar 

  19. R.J. Nemanich, J.A. Carlisle, A. Hirata, K. Haenen, CVD diamond—research, applications and challenges. MRS Bull. 39, 490–494 (2014). doi:10.1557/mrs.2014.97

    Article  Google Scholar 

  20. J.C. Arnault, H.A. Girard, Diamond nucleation and seeding techniques: two complementary strategies for growth of ultra-thin diamond films, in Nanodiamonds, Royal Society Chemistry, ed. by O.A Williams (2014), pp. 221–252. ISBN 978-1-84973-639-8

    Google Scholar 

  21. N. Fujimori, T. Imai, A. Doi, Characterization of conductive diamond films. Vacuum 36, 99–102 (1986). doi:10.1016/0042-207X(86)90279-4

    Article  Google Scholar 

  22. Y. Takano, M. Nagao, T. Takenouchi, H. Umezawa, I. Sakaguchi, M. Tachiki, H. Kawarada, Superconductivity in polycrystalline diamond thin films. Diam. Relat. Mater. 14, 1936–1938 (2005). doi:10.1016/j.diamond.2005.08.014

    Article  Google Scholar 

  23. S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped 111 homoepitaxial diamond thin films. Appl. Phys. Lett. 71, 1065–1067 (1997). doi:10.1063/1.119729

    Article  Google Scholar 

  24. K. Tsugawa, M. Ishihara, J. Kim, M. Hasegawa, Y. Koga, Large-area and low-temperature nanodiamond coating by microwave plasma chemical vapor deposition. New Diamond Front. Carbon Technol. 16, 337–346 (2006). WOS:000246559400005

    Google Scholar 

  25. K. Tsugawa, M. Ishihara, J. Kim, Y. Koga, M. Hasegawa, Nanocrystalline diamond film growth on plastic substrates at temperatures below 100 °C from low-temperature plasma. 82, 125460 (2010). doi:10.1103/PhysRevB.82.125460

  26. J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009). doi:10.1088/0957-4484/20/23/235602

    Article  Google Scholar 

  27. R. Mahfouz, D.L. Floyd, W. Peng, J.T. Choy, M. Loncar, O.M. Bakr, Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting. Nanoscale 5, 11776–11782 (2013). doi:10.1039/c3nr03320a

    Article  Google Scholar 

  28. W. Peng, R. Mahfouz, J. Pan, Y. Hou, P.M. Beaujuge, O.M. Bakr, Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5, 5017–5026 (2013). doi:10.1039/c3nr00990d

    Article  Google Scholar 

  29. A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010). doi:10.1021/am100720n

    Article  Google Scholar 

  30. M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). doi:10.1002/adma.200601452

    Article  Google Scholar 

  31. Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009). doi:10.1021/nn900339s

    Article  Google Scholar 

  32. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, C. Becher, Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl. Phys. Lett. 98, 243107 (2011). doi:10.1063/1.3599608

    Article  Google Scholar 

  33. S. Heyer, W. Janssen, S. Turner, Y.G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757 (2014). doi:10.1021/nn500573x

    Article  Google Scholar 

  34. F.A. Raal, A spectrographic study of the minor element content of diamond. Am. Mineral. 42, 354–361 (1957). WOS:A1957XF01500004

    Google Scholar 

  35. V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 70, 607–626 (2001). Accession Number: WOS:000184202800004

    Google Scholar 

  36. H. Sakurai, N. Ebihara, E. Osawa, M. Takahashi, M. Fujinami, K. Oguma, Adsorption characteristics of a nanodiamond for oxoacid anions and their application to the selective preconcentration of tungstate in water samples. Anal. Sci. 22, 357–362 (2006). doi:10.2116/analsci.22.357

    Article  Google Scholar 

  37. B.V. Spitsyn, J.L. Davidson, M.N. Gradoboev, T.B. Galushko, N.V. Serebryakova, T.A. Karpukhina, I.I. Kulakova, N.N. Melnik, Inroad to modification of detonation nanodiamond. Diam. Relat. Mater. 15, 296–299 (2006). doi:10.1016/j.diamond.2005.07.033

    Article  Google Scholar 

  38. A.P. Koscheev, Thermodesorption mass spectrometry in the light of solution of the problem of certification and unification of the surface properties of detonation nanodiamonds. Russ. J. Gen. Chem. 79, 2033–2044 (2009). doi:10.1134/S1070363209090357

    Article  Google Scholar 

  39. S. Merchel, U. Ott, S. Herrmann, B. Spettel, T. Faestermann, K. Knie, G. Korschinek, G. Rugel, A. Wallner, Presolar nanodiamonds: faster, cleaner, and limits on platinum-HL. Geochim. Cosmochim. Acta 67, 4949–4960 (2003). doi:10.1016/S0016-7037(03)00421-6

    Article  Google Scholar 

  40. D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J. Mater. Sci. 49, 3573–3591 (2014). doi:10.1007/s10853-014-8036-3

    Article  Google Scholar 

  41. D.S. Volkov, M.A. Proskurnin, M.V. Korobov, Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon 74, 1–13 (2014). doi:10.1016/j.carbon.2014.02.072

    Article  Google Scholar 

  42. I. Rehor, P. Cigler, Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 46, 21–24 (2014). doi:10.1016/j.diamond.2014.04.002

    Article  Google Scholar 

  43. J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendler, S.Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek, P. Cigler, Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). doi:10.1039/c2nr32778c

    Article  Google Scholar 

  44. O.A. Shenderova, I.I. Vlasov, S. Turner, G. Van Tendeloo, S.B. Orlinskii, A.A. Shiryaev, A.A. Khomich, S.N. Sulyanov, F. Jelezko, J. Wrachtrup, Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis. J. Phys. Chem. C 115, 14014–14024 (2011). doi:10.1021/jp202057q

    Article  Google Scholar 

  45. A.E. Aleksenskii, V.Y. Osipov, A.T. Dideikin, A.Y. Vul’, G.J. Adrianssens, V.V. Afanas’ev, Ultradisperse diamond cluster aggregation studied by atomic force microscopy. Tech. Phys. Lett. 26, 819–821 (2000). doi:10.1134/1.1315505

    Article  Google Scholar 

  46. T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, P. Bergonzo, Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 84, 233407 (2011). doi:10.1103/PhysRevB.84.233407

    Article  Google Scholar 

  47. M.V. Baidakova, in Methods of Characterization and Models of Nanodiamond Particles in Detonation Nanodiamonds: Science and Applications, ed. by A.Y. Vul’, O.A. Shenderova (Pan Stanfford Publishing Pte Ltd.). ISBN 978-981-4411-27-1

    Google Scholar 

  48. S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19, 2116–2124 (2009). doi:10.1002/adfm.200801872

    Article  Google Scholar 

  49. A.S. Barnard, M.C. Per, Size and shape dependent deprotonation potential and proton affinity of nanodiamond. Nanotechnology 25, 445702 (2014). doi:10.1088/0957-4484/25/44/445702

    Article  Google Scholar 

  50. L. Lai, A.S. Barnard, Tuning the electron transfer properties of entire nanodiamond ensembles. J. Phys. Chem. C 118, 30209–30215 (2014). doi:10.1021/jp509355g

    Article  Google Scholar 

  51. L.Y. Chang, E. Osawa, A.S. Barnard, Conformation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3, 958–962 (2011). doi:10.1039/c0nr00883d

    Article  Google Scholar 

  52. Z. Chu, S. Zhang, B. Zhang, C. Zhang, C.Y. Fang, I. Rehor, P. Cigler, H.C. Chang, G. Lin, R. Liu, Q. Li, Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific Reports 4, 4495 (2014). doi:10.1038/srep04495

    Google Scholar 

  53. A. Barnard, Modeling polydispersive ensembles of diamond nanoparticles. Nanotechnology 24, 085703 (2013). doi:10.1088/0957-4484/24/8/085703

    Article  Google Scholar 

  54. V.Y. Dolmatov, G.S. Yurev, V. Myllymaki, K.M. Korolev, Why detonation nanodiamonds are small. J. Superhard Mater. 35, 77–82 (2013). doi:10.3103/S1063457613020020

    Article  Google Scholar 

  55. I.I. Vlasov, O. Shenderova, S. Turner, O.I. Lebedev, A.A. Basov, I. Sildos, M. Rähn, A.A. Shiryaev, G. Van Tendeloo, Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010). doi:10.1002/smll.200901587

    Article  Google Scholar 

  56. S. Turner, O. Shenderova, F. Da Pieve, Y.G. Lu, E. Yücelen, J. Verbeeck, D. Lamoen, G. Van Tendeloo, Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Phys. Status Solidi A 210, 1976–1984 (2013). doi:10.1002/pssa.201300315

    Article  Google Scholar 

  57. A.M. Panich, N.A. Sergeev, A.I. Shames, V.Y. Osipov, J.P. Boudou, S.D. Goren, Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. J. Phys. Condens. Matter 27(7), 072203 (2015). doi:10.1088/0953-8984/27/7/072203

    Google Scholar 

  58. H.A. Girard, T. Petit, S. Perruchas, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13, 11511–11516 (2011). doi:10.1039/c1cp20424f

    Article  Google Scholar 

  59. M. Mermoux, A. Crisci, T. Petit, H.A. Girard, J.C. Arnault, Surface modifications of detonation nanodiamonds probed by multiwavelength Raman spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014). doi:10.1021/jp507377z

    Article  Google Scholar 

  60. O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, T. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115, 9827–9837 (2011). doi:10.1021/jp1102466

    Article  Google Scholar 

  61. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006). doi:10.1021/ja063303n

    Article  Google Scholar 

  62. A. Wolcott, T. Schiros, M.E. Trusheim, E.H. Chen, D. Nordlund, R.E. Diaz, O. Gaathon, D. Englund, J.S. Owen, Surface structure of aerobically oxidized diamond nanocrystals. J. Phys. Chem. C 118, 26695–26702 (2014). doi:10.1021/jp506992c

    Article  Google Scholar 

  63. I. Petrov, O. Shenderova, V. Grishko, V. Grichko, T. Tyler, G. Cunningham, G. McGuire, Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam. Relat. Mater. 16, 2098–2103 (2007). doi:10.1016/j.diamond.2007.05.013

    Article  Google Scholar 

  64. V.G. Sushchev, V.Y. Dolmatov, V.A. Marchukov, M.V. Veretennikova, Fundamentals of chemical purification of detonation nanodiamond soot using nitric acid. J. Superhard Mater. 30, 297–304 (2008). doi:10.3103/S1063457608050031

    Article  Google Scholar 

  65. V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17, 13–22 (2008). doi:10.1016/j.diamond.2007.09.011

    Article  Google Scholar 

  66. L. Schmidlin, V. Pichot, M. Comet, S. Josset, P. Rabu, D. Spitzer, Identification, quantification and modification of detonation nanodiamond functional groups. Diam. Relat. Mater. 22, 113–117 (2012). doi:10.1016/j.diamond.2011.12.009

    Article  Google Scholar 

  67. D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Microwave-assisted purification of detonation nanodiamond. Diam. Relat. Mater. 48, 37–46 (2014). doi:10.1016/j.diamond.2014.06.007

    Article  Google Scholar 

  68. V.Y. Dolmatov, A. Vehanen, V. Myllymaki, K.A. Rudometkin, A.N. Panova, K.M. Korolev, T.A. Shpadkovskaya, Deep purification of detonation nanodiamond material. J. Superhard Mater. 35, 408–414 (2013). doi:10.3103/S1063457613060099

    Article  Google Scholar 

  69. A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul’, E. Osawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 1722–1730 (2005). doi:10.1016/j.carbon.2005.02.020

    Google Scholar 

  70. M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). doi:10.1002/adma.200601452

    Article  Google Scholar 

  71. Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009). doi:10.1021/nn900339s

    Article  Google Scholar 

  72. X.Y. Xu, Y.W. Zhu, B.C. Wang, Z.M. Yu, S.Z. Xie, Mechanochemical dispersion of nanodiamond aggregates in aqueous media. J. Mater. Sci. Technol. 21, 109–112 (2005). WOS:000226775000026

    Google Scholar 

  73. Y.Y. Xu, Z.M. Yu, Y.M. Zhu, B.C. Wang, Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diamond Relat. Mater. 14, 206–212 (2005). doi:10.1016/j.diamond.2004.11.004

    Article  Google Scholar 

  74. X.Y. Zhang, S.Q. Wang, M.Y. Liu, J.F. Hui, B. Yang, L. Tao, Y. Wei, Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicol. Res. 2, 335–342 (2013). doi:10.1039/c3tx50021g

    Article  Google Scholar 

  75. A.E. Aleksenskiy, E.D. Eydelman, A.Y. Vul’, Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011). doi:10.1166/nnl.2011.1122

    Article  Google Scholar 

  76. Y. Sun, P. Olsen, T. Waag, A. Krueger, D. Steinmüler-Nethl, A.C. Albertsson, A. Finne-Wistrand, Disaggregation and anionic activation of nanodiamonds mediated by sodium hydride—a new route to functional aliphatic polyester-based nanodiamond materials. Part. Part. Syst. Charact. 32, 35–42 (2015). doi:10.1002/ppsc.201400098

    Article  Google Scholar 

  77. J.C. Arnault, Surface modifications of nanodiamonds and current issues for their biomedical applications, in Novel Aspects of Diamond, Topics in Applied Physics, vol 121, ed. by N. Yang (2014). doi:10.1007/978-3-319-09834-0_4

    Google Scholar 

  78. H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diam. Relat. Mater. 19, 1117–1123 (2010). doi:10.1016/j.diamond.2010.03.019

    Article  Google Scholar 

  79. H.A. Girard, A. El Kharbachi, S. Garcia-Argote, T. Petit, P. Bergonzo, B. Rousseau, J.C. Arnault, Tritium labeling of detonation nanodiamonds. Chem. Comm. 50, 2916–2918 (2014). doi:10.1039/c3cc49653h

    Article  Google Scholar 

  80. T. Petit, H.A. Girard, A. Trouve, I. Batonneau-Genner, P. Bergonzo, J.C. Arnault, Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale 5, 8958–8962 (2013). doi:10.1039/c3nr02492j

    Article  Google Scholar 

  81. T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, T.Y. Kang, C.L. Cheng, P. Bergonzo, Oxygen hole doping of nanodiamond. Nanoscale 4, 6792–6799 (2012). doi:10.1039/c2nr31655b

    Article  Google Scholar 

  82. K.I. Sotowa, T. Amamoto, A. Sobana, K. Kusakabe, T. Imato, Effect of treatment temperature on the amination of chlorinated diamond. Diam. Relat. Mater. 13, 145–150 (2004). doi:10.1016/j.diamond.2003.10.029

    Article  Google Scholar 

  83. C.L. Huang, H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–5884 (2004). doi:10.1021/la0495736

    Article  Google Scholar 

  84. W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25, 185–191 (2009). doi:10.1021/la8029787

    Article  Google Scholar 

  85. J.R. Bertrand, C. Pioche-Durieu, J. Ayala, T. Petit, H.A. Girard, C. Malvy, E. Le Cam, F. Treussart, J.C. Arnault, Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 45, 93–98 (2015). doi:10.1016/j.biomaterials.2014.12.007

    Article  Google Scholar 

  86. A. Bolker, C. Saguy, R. Kalish, Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques. Nanotechnology 25, 385702 (2014). doi:10.1088/0957-4484/25/38/385702

    Article  Google Scholar 

  87. T. Kondo, I. Neitzel, V.N. Mochalin, J. Urai, M. Yuasa, Y. Gogotsi, Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 113, 214307 (2013). doi:10.1063/1.4809549

    Article  Google Scholar 

  88. T. Petit, H.A. Girard, M. Combis-Schlumberger, R. Grall, J. Delic, S. Morel-Altmeyer, P. Bergonzo, S. Chevillard, J.C. Arnault, Nanodiamond as a multimodal platform for drug delivery and radiosensitization of tumor cells. in Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 5–8 Aug 2013

    Google Scholar 

  89. R. Grall, H. Girard, L. Saad, T. Petit, C. Gesset, M. Combis-Schlumberger, V. Paget, J. Delic, J.C. Arnault, S. Chevillard, Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 61, 290–298 (2015).

    Google Scholar 

  90. J.C. Arnault, T. Petit, H.A. Girard, C. Gesset, M. Combis-Schlumberger, M. Sennour, A. Koscheev, A.A. Khomich, I. Vlasov, O. Shenderova, Surface graphitization of ozone treated detonation nanodiamonds. Phys. Status Solidi A 211, 2739–2743 (2014). doi:10.1002/pssa.201431397

    Article  Google Scholar 

  91. T. Petit, M. Pflüger, D. Tolksdorf, J. Xiao, E.F. Aziz, Valence holes observed in nanodiamonds dispersed in water. Nanoscale 7, 2987–2991 (2015). doi:10.1039/C4NR06639A

    Article  Google Scholar 

  92. Y. Diao, L. Shaw, Z. Bao, S.C.B. Mannsfeld, Morphology control strategies for solution processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014). doi:10.1039/c4ee00688g

    Article  Google Scholar 

  93. O.A. Williams, Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011). doi:10.1016/j.diamond.2011.02.015

    Article  Google Scholar 

  94. J.C. Arnault, S. Saada, O.A. Williams, K. Haenen, P. Bergonzo, M. Nesladek, R. Polini, E. Osawa, Diamond nanoseeding on silicon: stability under H2 MPCVD exposures and early stages of growth. Diam. Relat. Mater. 17, 1143–1149 (2008). doi:10.1016/j.diamond.2008.01.008

    Article  Google Scholar 

  95. J.C. Arnault, S. Saada, O.A. Williams, K. Haenen, P. Bergonzo, M. Nesladek, R. Polini, E. Osawa, Surface characterisation of silicon substrates seeded with diamond nanoparticles under UHV annealing. Phys. Stat. Sol. (A) 205, 2108–2113 (2008). doi:10.1002/pssa.200879728

    Article  Google Scholar 

  96. S. Zeppilli, J.C. Arnault, C. Gesset, P. Bergonzo, R. Polini, Thermal stability and surface modifications of detonation diamond nanoparticles studied with X-ray photoelectron spectroscopy. Diam. Relat. Mater. 19, 846–853 (2010). doi:10.1016/j.diamond.2010.02.005

    Article  Google Scholar 

  97. M. Daenen, O.A. Williams, J. D’Haen, K. Haenen, M. Nesladek, Seeding, growth and characterization of nanocrystalline diamond films on various substrates. Phys. Sta. Sol A 203, 3005–3010 (2006). doi:10.1002/pssa.200671122

    Article  Google Scholar 

  98. X. Liu, T. Yu, Q. Wei, Z. Yu, X. Xu, Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles. Colloids Surf. A Physicochem. Eng. Aspects 412, 82–89 (2012). doi:10.1007/s00339-014-8355-x

    Google Scholar 

  99. J. Hees, N. Heidrich, W. Pletschen, R.E. Sah, M. Wolfer, O.A. Williams, V. Lebedev, C.E. Nebel, O. Ambacher, Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24, 025601 (7 pp) (2013). doi:10.1088/0957-4484/24/2/025601

    Google Scholar 

  100. V.V. Chernov, A.L. Vikharev, A.M. Gorbachev, A.V. Kozlov, A.Y. Vul’, A.E. Aleksenskii, The nucleation and growth of nanocrystalline diamond films in millimeter-wave CVD reactor. Fullerenes Nanotubes Carbon Nanostruct. 20, 600–605 (2012). doi:10.1080/1536383X.2012.656550

    Google Scholar 

  101. M. Tsigourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substratesphys. Stat. Sol. A 209, 1659–1663 (2012). doi:10.1002/pssa.201200137

    Google Scholar 

  102. M. Bonnauron, S. Saada, C. Mer, C. Gesset, O.A. Williams, L. Rousseau, E. Scorsone, P. Mailley, M. Nesladek, J.-C. Arnault, P. Bergonzo, Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys. Stat. Sol. A 205, 2126–2129 (2008). doi:10.1002/pssa.200879733

    Google Scholar 

  103. H.A. Girard, E. Scorsone, S. Saada, C. Gesset, J.C. Arnault, S. Perruchas, L. Rousseau, S. David, V. Pichot, D. Spitzer, P. Bergonzo, Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures. Diam. Relat. Mater. 23, 83–87 (2012). doi:10.1016/j.diamond.2012.01.021

    Article  Google Scholar 

  104. R. Bogdanowicz, M. Śmietana, M. Gnyba, Ł. Gołunski, J. Ryl, M. Gardas, Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding. Appl. Phys. A 116, 1927–1937 (2014). doi:10.1007/s00339-014-8355-x

    Google Scholar 

  105. S. Ruffinatto, H.A. Girard, F. Becher, J.C. Arnault, D. Tromson, P. Bergonzo, Diamond porous conductive membranes: a new material toward analytical chemistry. Diam. Relat. Mater. (2015). doi:10.1016/diamond.2015.03.008

  106. M. Tsigkourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys. Stat. sol a 209, 1659–1663 (2012). doi:10.1002/pssa.201200137

    Article  Google Scholar 

  107. N.A. Feoktistov, V.I. Sakharov, I.T. Serenkov, V.A. Tolmachev, I.V. Korkin, A.E. Aleksenskii, A.Y. Vul’, V.G. Golubev, Aerosol Deposition of Detonation Nanodiamonds Used as Nucleation Centers for the Growth of Nanocrystalline Diamond Films and Isolated Particles. Tech. Phys. 56, 718–724 (2011). doi:10.1134/S1063784211050112

    Google Scholar 

  108. O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255–258 (2007). doi:10.1016/j.cplett.2007.07.091

    Article  Google Scholar 

  109. O. Shenderova, S. Hens, G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO. Diam. Relat. Mater. 19, 260–267 (2010). doi:10.1016/j.diamond.2009.10.008

    Article  Google Scholar 

  110. S.C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov, O. Shenderova, Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam. Relat. Mater. 17, 1858–1866 (2008). doi:10.1016/j.diamond.2008.03.020

    Article  Google Scholar 

  111. A. Kromka, O. Babchenko, H. Kozak, K. Hruska, B. Rezek, M. Ledinsky, J. Potmesil, M. Michalka, M. Vanecek, Seeding of polymer substrates for nanocrystalline diamond film growth. Diam. Relat. Mater. 18, 734–739 (2009). doi:10.1016/j.diamond.2009.01.023

    Article  Google Scholar 

  112. W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8, 1419–1428 (2014). doi:10.1021/nn405240g

    Article  Google Scholar 

  113. H. Schwertfeger, A. Fokin, P.R. Schreiner, Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008). doi:10.1002/anie.200701684

    Article  Google Scholar 

  114. Y.C. Chen, L. Chang, Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Adv. 4, 18945–18950 (2014). doi:10.1039/c4ra01042f

    Article  Google Scholar 

  115. J. Hees, A. Kriele, O.A. Williams, Electrostatic self-assembly of diamond nanoparticles. Chem. Phys. Lett. 509, 12–15 (2011). doi:10.1016/j.cplett.2011.04.083

    Article  Google Scholar 

  116. X.Z. Liu, T. Yu, Q.P. Wei, Z.M. Yu, X.Y. Xu, Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles. Colloids Surf. A 412, 82–89 (2012). doi:10.1016/j.colsurfa.2012.07.020

    Article  Google Scholar 

  117. I. Zhitomirsky, Cathodic electrophoretic deposition of diamond particles. Mater. Lett. 37, 72–78 (1998). doi:10.1016/S0167-577X(98)00074-3

    Article  Google Scholar 

  118. A.N. Alimova, N.N. Chubun, P.I. Belobrov, P.Y. Detkov, V.V. Zhirnov, Electrophoresis of nanodiamond powder for cold cathode fabrication. J. Vac. Sci. Technol., B 17, 715–718 (1999). doi:10.1116/1.590625

    Article  Google Scholar 

  119. Y.H. Wang, Q.Z. Chen, J. Cho, A.R. Boccaccini, Electrophoretic co-deposition of diamond/borosilicate glass composite coatings. Surf. Coat. Technology 201, 7645–7651 (2007). doi:10.1016/j.surfcoat.2007.02.037

    Article  Google Scholar 

  120. L. Schmidlin, V. Pichot, S. Josset, R. Pawlak, T. Glatzel, S. Kawai, E. Meyer, D. Spitzer, Two-dimensional nanodiamond monolayers deposited by combined ultracentrifugation and electrophoresis techniques. Appl. Phys. Lett. 101, 253111 (2012). doi:10.1063/1.4772983]

    Google Scholar 

  121. P. Pobedinskas, G. Degutis, W. Dexters, W. Janssen, S.D. Janssens, B. Conings, B. Ruttens, J. D’Haen, H.-G. Boyen, A. Hardy, M.K. Van Bael, K. Haenen, Appl. Phys. Lett. 102, 201609 (2013). doi:10.1063/1.4807591]

    Article  Google Scholar 

  122. V. Pichot, K. Bonnot, N. Piazzon, M. Schaefer, M. Comet, D. Spitzer, Deposition of detonation nanodiamonds by Langmuir-Blodgett technique. Diam. Relat. Mater. 19, 479–483 (2010). doi:10.1016/j.diamond.2009.10.031

    Article  Google Scholar 

  123. E. Scorsone, S. Saada, J.C. Arnault, P. Bergonzo, Enhanced control of diamond nanoparticle seeding using a polymer matrix. J. Appl. Phys. 106, 14908 (2009). doi:10.1063/1.3153118

    Article  Google Scholar 

  124. A. Mamedov, J. Ostrander, F. Aliev, N.A. Kotov, Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly. Langmuir 16, 3941–3949 (2000). doi:10.1021/la990957j

    Article  Google Scholar 

  125. W. Xue, T. Cui, Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films. Nanotechnology 18, 145709 (2007). doi:10.1088/0957-4484/18/14/145709

    Article  Google Scholar 

  126. H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.C. Arnault, P. Bergonzo, J.P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces 1, 2738–2746 (2009). doi:10.1021/am900458g

    Article  Google Scholar 

  127. J.H. Kim, S.K. Lee, O.M. Kwon, S.I. Hong, D.S. Lim, Thickness controlled and smooth polycrystalline CVD diamond film deposition on SiO2 with electrostatic self assembly seeding process. Diam. Relat. Mater. 18, 1218–1222 (2009). doi:10.1016/j.diamond.2009.04.012

    Article  Google Scholar 

  128. S.K. Lee, J.H. Kim, M.G. Jeong, M.J. Song, D.S. Lim, Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles. Nanotechnology 21, 505302 (2010). doi:10.1088/0957-4484/21/50/505302

    Article  Google Scholar 

  129. E. Chevallier, E. Scorsone, H.A. Girard, V. Pichot, D. Spitzer, P. Bergonzo, Metalloporphyrin-functionalised diamond nano-particles as sensitive layer for nitroaromatic vapours detection at room-temperature. Sens. Actuators B 151, 191–197 (2010). doi:10.1016/j.snb.2010.09.022

    Article  Google Scholar 

  130. H.A. Girard, E. Scorsone, S. Saada, C. Gesset, J.C. Arnault, S. Perruchas, L. Rousseau, S. David, V. Pichot, D. Spitzer, P. Bergonzo, Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures. Diam. Relat. Mater. 23, 83–87 (2012). doi:10.1016/j.diamond.2012.01.021

    Article  Google Scholar 

  131. G. Saini, D.S. Jensen, L.A. Wiest, M.A. Vail, A. Dadson, M.L. Lee, V. Shutthanandan, M.R. Linford, Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography. Anal. Chem. 82, 4448–4456 (2010). doi:10.1021/ac1002068

    Article  Google Scholar 

  132. A.V. Sumant, O. Auciello, M. Liao, O.A. Williams, MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bull. 39, 511–516 (2014). doi:10.1557/mrs.2014.98

    Article  Google Scholar 

  133. T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195–199 (2010). doi:10.1038/NNANO.2010.6

    Article  Google Scholar 

  134. X. Checoury, D. Néel, P. Boucaud, C. Gesset, H. Girard, S. Saada, P. Bergonzo, Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities. Appl. Phys. Lett. 101, 171115 (2012). doi:10.1063/1.4764548

    Google Scholar 

  135. A. Bongrain, E. Scorsone, L. Rousseau, G. Lissorgues, P. Bergonzo, Realisation and characterisation of mass-based diamond micro-transducers working in dynamic mode. Sens. Actuators B 154, 142–149 (2011). doi:10.1016/j.snb.2009.12.067

    Article  Google Scholar 

  136. O. Babchenko, E. Verveniotis, K. Hruska, M. Ledinsky, A. Kromka, B. Rezek, Direct growth of sub-micron diamond structures. Vacuum 86, 693–695 (2012). doi:10.1016/j.vacuum.2011.08.011

    Article  Google Scholar 

  137. O. Shimoni, J. Cervenka, T.J. Karle, K. Fox, B.C. Gibson, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, Development of a templated approach to fabricate diamond patterns on various substrates. ACS Appl. Mater. Interfaces 6, 8894–8902 (2014). doi:10.1021/am5016556

    Google Scholar 

  138. S.G. Rao, A. Karim, J. Schartz, N. Antler, T. Schenkel, I. Siddiqi, Directed assembly of nanodiamond nitrogen-vacancy centers on a chemically modified patterned surface. ACS Appl. Mater. Interfaces 6, 12893–12900 (2014). doi:10.1021/am5027665

    Article  Google Scholar 

  139. H. Zhuang, B. Song, T. Staedler, X. Jiang, Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27, 11981–11989 (2011)

    Article  Google Scholar 

  140. T. Vandenryt, L. Grieten, S.D. Janssens, B. Van Grinsven, K. Haenen, B. Ruttens, J. D’Haens, P. Wagner, R. Thoelen, W. De Ceuninck, Rapid fabrication of micron-sized CVD-diamond structures by microfluidic contact printing. Phys. Stat. Sol. A 211, 1448–1454 (2014). doi:10.1002/pssa.201330665

    Google Scholar 

  141. Y.C. Chen, Y. Tzeng, A.J. Cheng, R. Dean, M. Park, B.M. Wilamowski, Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond structures and practical applications. Diam. Relat. Mater. 18, 146–150 (2009). doi:10.1016/j.diamond.2008.10.004

    Article  Google Scholar 

  142. S. Singh, V. Thomas, D. Martyshkin, V. Kozlovskaya, E. Kharlampieva, S.A. Catledge, Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence. Nanotechnology 25, 045302 (2014). doi:10.1088/0957-4484/25/4/045302

    Article  Google Scholar 

  143. O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, H.D. Espinosa, Nanofountain-Probe-Based High-Resolution Patterning and Single-Cell Injection of Functionalized Nanodiamonds. Small 5, 1667–1674 (2009). doi:10.1002/smll.200900361

    Article  Google Scholar 

  144. A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, M.B. Plenio, Self-assembling hybrid diamond–biological quantum devices. New J. Phys. 16, 093002 (2014). doi:10.1088/1367-2630/16/9/093002

    Article  Google Scholar 

  145. W.X. Wang, D. Pelah, T. Alergand, O. Shoseyov, A. Altmann, Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. Plant Physiol. 130, 865–875 (2002). doi:10.1104/pp.002436

    Article  Google Scholar 

  146. V. Paget, J.A. Sergent, R. Grall, S. Altmeyer-Morel, H.A. Girard, T. Petit, G. Gesset, M. Mermoux, P. Bergonzo, J.C. Arnault, S. Chevillard, Nanodiamonds are neither cytotoxic nor genotoxic on kidney, intestine, lung and liver human cell lines. Nanotoxicology 8, 46–56 (2014). doi:10.3109/17435390.2013.855828

    Article  Google Scholar 

  147. J.I. Chao, E. Perevedentseva, P.H. Chung, K.K. Liu, C.Y. Cheng, C.C. Chang, C.L. Cheng, Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007). doi:10.1529/biophysj.107.108134

    Article  Google Scholar 

  148. J.M. Rosenholm, I.I. Vlasov, S.A. Burinov, T.A. Dolenko, O.A. Shenderova, Nanodiamond-Based composite structures for biomedical imaging and drug delivery. J. Nanosci. Nanotechnol. 15, 959–971 (2015). doi:10.1166/jnn.2015.9742

    Article  Google Scholar 

  149. R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012). doi:10.1021/cr100449n

    Article  Google Scholar 

  150. P. Mélinon, S. Begin-Colin, J.L. Duvail, F. Gauffre, N. Herlin Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, B. Warot-Fonrose, Engineered inorganic core/shell nanoparticles. Phys. Rep. 543, 163–197 (2014). doi:10.1016/j.physrep.2014.05.003

    Google Scholar 

  151. W. Schärtl, Current directions in core-shell nanoparticle design. Nanoscale 2, 829–843 (2010). doi:10.1039/c0nr00028k

    Article  Google Scholar 

  152. E. von Haartman, H. Jiang, A.A. Khomich, J. Zhang, S.A. Burikov, T.A. Dolenko, J. Ruokolainen, H. Gu, O.A. Shenderova, I.I. Vlasov, J.M. Rosenholm, Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J. Mater. Chem. B 1, 2358–2366 (2013). doi:10.1039/c3tb20308e

    Article  Google Scholar 

  153. N. Prabhakar, T. Nareoja, E. von Haartman, D.S. Karaman, H. Jiang, S. Koho, T.A. Dolenko, P.E. Hanninen, D.I. Vlasov, V.G. Ralchenko, S. Hosomi, I.I. Vlasov, C. Sahlgrenbci, J.M. Rosenholm, Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5, 3713–3722 (2013). doi:10.1039/c3nr33926b

    Article  Google Scholar 

  154. I. Rehor, J. Slegerova, J. Kucka, V. Proks, V. Petrakova, M.P. Adam, F. Treussart, S. Turner, S. Bals, P. Sacha, M. Ledvina, A.M. Wen, N.F. Steinmetz, P. Cigler, Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small 10, 1106–1115 (2014). doi:10.1002/smll.201302336

    Article  Google Scholar 

  155. S. Oldenburg, R. Averitt, S. Westcott, N. Halas, Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998). doi:10.1016/S0009-2614(98)00277-2

    Article  Google Scholar 

  156. L. Minati, C.L. Cheng, Y.C. Lin, J. Hees, G. Lewes-Malandrakis, C.E. Nebel, F. Benetti, C. Migliaresi, G. Speranza, Synthesis of novel nanodiamonds-gold core shell nanoparticles. Diam. Relat. Mater. 53, 23–28 (2015). doi:10.1016/j.diamond.2015.01.004

    Article  Google Scholar 

  157. T. Pham, J.B. Jackson, N.J. Halas, T.R. Lee, Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18, 4915–4920 (2002). doi:10.1021/la015561y

    Article  Google Scholar 

  158. W.L. Shi, Y. Sahoo, M.T. Swihart, P.N. Prasad, Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610–1617 (2005). doi:10.1021/la047628y

    Article  Google Scholar 

  159. I. Rehor, K.L. Lee, K. Chen, M. Hajek, J. Havlik, J. Lokajova, M. Masat, J. Slegerova, S. Shukla, H. Heidari, S. Bals, N.F. Steinmetz, P. Cigler, Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation. Adv. Healthc. Mater. 4, 460–468 (2015). doi:10.1002/adhm.201400421

    Article  Google Scholar 

  160. B.E. Brinson, J.B. Lassiter, C.S. Lewin, R. Bardhan, N. Mirin, N.J. Halas, Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008). doi:10.1021/la802049p

    Article  Google Scholar 

  161. S. Pankasem, J.K. Thomas, M.J. Snowden, B. Vincent, Photophysical studies of poly (N-isopropylacrylamide) microgel structures. Langmuir 10, 3023–3026 (1994). doi:10.1021/la00021a027

    Article  Google Scholar 

  162. T. Hoare, R. Pelton, Titrametric characterization of pH-induced phase transitions in functionalized microgels. Langmuir 22, 7342–7350 (2006). doi:10.1021/la0608718

    Article  Google Scholar 

  163. M. Shibayama, F. Ikkai, S. Inamoto, S. Nomura, C.C. Han, pH and salt concentration dependence of the microstructure of poly (N-isopropylacrylamide-co-acrylic acid) gels. J. Chem. Phys. 105, 4358–4366 (1996). doi:10.1063/1.472252

    Article  Google Scholar 

  164. H.A. Girard, P. Benayoun, C. Blin, A. Trouvé, C. Gesset, J.C. Arnault, P. Bergonzo, Encapsulated nanodiamonds in smart microgels toward self-assembled diamond nanoarrays. Diam. Relat. Mater. 33, 32–37 (2013). doi:10.1016/j.diamond.2012.12.007

    Article  Google Scholar 

  165. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). doi:10.1021/ja062677d

    Article  Google Scholar 

  166. X. Zhang, S. Wang, C. Zhu, M. Liu, Y. Ji, L. Feng, L. Tao, Y. Wei, Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. J. Colloid Interface Sci. 397, 39–44 (2013). doi:10.1016/j.jcis.2013.01.063

    Article  Google Scholar 

  167. O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y.G. Lu, G. Van Tendeloo, A. Schrand, S.A. Burinov, T.A. Dolenko, Carbon dot decorated nanodiamonds. Part. Part. Syst. Charact. 31, 580–590 (2014). doi:10.1002/ppsc.201300251

    Article  Google Scholar 

  168. V.V. Avdeev, N.E. Sorokina, N.V. Maksimova, I.Y. Martnynov, A.V. Sezemin, Synthesis of ternary intercalation compounds in the graphite-HNO3-R (R = H2SO4, H3PO4, CH3COOH) systems. Inorg. Mater. 37, 366 (2001). doi:10.1023/A:1017527827724

    Article  Google Scholar 

  169. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002). doi:10.1080/00018730110113644

    Article  Google Scholar 

  170. A.E. Aleksensky, M.V. Baidakova, M.A. Yagovkina, V.I. Siklitsky, A.Y. Vul’, H. Naramoto, V.I. Lavrentiev, Nanodiamonds intercalated with metals: structure and diamond-graphite phase transitions. Diam. Relat. Mater. 13, 2076–2080 (2004). doi:10.1016/j.diamond.2004.05.008

    Article  Google Scholar 

  171. A.I. Shames, A.M. Panich, VYu. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107, 014318 (2010). doi:10.1063/1.3273486

    Article  Google Scholar 

  172. A.M. Panich, A. Altman, A.I. Shames, VYu. Osipov, A.E. Aleksenskiy, A.Y. Vul’, Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J. Phys. D Appl. Phys. 44, 125303 (2011). doi:10.1088/0022-3727/44/12/125303

    Article  Google Scholar 

  173. A.I. Shames, VYu. Osipov, A.E. Aleksenskiy, E. Ōsawa, A.Y. Vul’, Locating inherent unpaired orbital spins in detonation nanodiamonds through the targeted surface decoration by paramagnetic probes. Diamond Relat. Mater. 20, 318–321 (2011). doi:10.1016/j.diamond.2011.01.007

    Article  Google Scholar 

  174. I.D. Gridnev, V.Y. Osipov, A.E. Aleksenskii, A.Y. Vul’, T. Enoki, Combined experimental and DFT study of the chemical binding of copper ions on the surface of nanodiamonds. Bull. Chem. Soc. Jpn. 87, 693–704 (2014). doi:10.1246/bcsj.20130345

    Google Scholar 

  175. A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispaa, A. Das, Hard nanodiamonds in soft rubbers: past, present and future—a review. Compos. Part A 64, 49–69 (2014). doi:10.1016/j.compositesa.2014.04.014

    Google Scholar 

  176. Q. Zhang, K. Naito, Y. Tanaka, Y. Kagawa, Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008). doi:10.1021/ma702268x

    Article  Google Scholar 

  177. I. Cha, K. Shirai, K. Fujiki, T. Yamauchi, N. Tsubokawa, Surface grafting of polymers onto nanodiamond by ligand-exchange reaction of ferrocene moieties of polymers with polycondensed aromatic rings of the surface. Diam. Relat. Mater. 20, 439–444 (2011). doi:10.1016/j.diamond.2011.01.014

    Article  Google Scholar 

  178. S. Morimune, M. Kotera, T. Nishino, K. Goto, K. Hata, Poly (vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44, 4415–4421 (2011). doi:10.1021/ma200176r

    Article  Google Scholar 

  179. I. Neitzel, V. Mochalin, Y. Gogotsi, Advances in surface chemistry of nanodiamond and nanodiamond–polymer composites, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2nd edn, ed. by O.A. Shenderova, D.M. Gruen (William Andrew, 2012), pp. 421–457

    Google Scholar 

  180. M.R. Ayatollahi, E. Alishahi, R.S. Doagou, S. Shadlou, Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Compos Part B Eng. 43, 3425–3430 (2012). doi:10.1016/j.compositesb.2012.01.022

    Article  Google Scholar 

  181. K.D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, Y. Gogotsi, Nanodiamond-polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009). doi:10.1021/nn800445z CCC: $40.75

  182. I. Neitzel, V.N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G.R. Palmese, Y. Gogotsi, Maximizing Young’s modulus of aminated nanodiamond–epoxy composites measured in compression. Polymer 53, 5965–5971 (2012). doi:10.1016/j.polymer.2012.10.037

    Article  Google Scholar 

  183. V.Y. Dolmatov, Applications of detonation nanodiamond, in Ultrananocrystalline Diamond, ed. by A. Shenderova Olga, M. Gruen Dieter (William Andrew Publishing, Norwich, 2006), pp. 477–527

    Google Scholar 

  184. A.P. Voznyakovskii, B.M. Ginzburg, D. Rashidov, D.G. Tochil’nikov, S. Tuichiev. Structure, mechanical, and tribological characteristics of polyurethane modified with nanodiamonds. Polym. Sci. Ser. A 52, 1044–1050 (2010). doi:10.1134/S0965545X10100068

    Google Scholar 

  185. E. Roumeli, E. Pavlidou, A. Avgeropoulos, G. Vourlias, D.N. Bikiaris, K. Chrissafis, factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene. J. Phys. Chem. B 118, 11341–11352 (2014). doi:10.1021/jp504531f

    Article  Google Scholar 

  186. H.B. Cho, S.T. Nguyen, T. Nakayama, H. Suematsu, T. Suzuki, W. Jiang, S. Tanaka, B.S. Kim, K. Niihara, Polyepoxide-based nanohybrid films with self-assembled linear assemblies of nanodiamonds. Acta Mater. 60, 7249–7257 (2012). doi:10.1016/j.actamat.2012.09.039

    Article  Google Scholar 

  187. Q. Zhang, V.N. Mochalin, I. Neitzel, K. Hazeli, J. Niu, A. Kontsos, J.G. Zhou, P.I. Lelkes, Y. Gogotsi, Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials 33, 5067–5075 (2012). doi:10.1016/j.biomaterials.2012.03.063

    Google Scholar 

  188. R. Liu, F. Zhao, X. Yu, K. Naito, H. Ding, X. Qu, Q. Zhang, Synthesis of biopolymer-grafted nanodiamond by ring-opening polymerization. Diam. Relat. Mater. 50, 26–32 (2014). doi:10.1016/j.diamond.2014.08.011

    Article  Google Scholar 

  189. C.N. Almeida B.C. Ramos, N.S. Da-Silva C. Pacheco-Soares, V.J. Trava-Airoldi, A.O. Lobo, F.R. Marciano, Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles. Appl. Surf. Sci. 275, 258–263 (2013). doi:10.1016/j.apsusc.2012.12.122

    Google Scholar 

  190. J.J. Taha-Tijerina, T.N. Narayanan, C. Sekhar Tiwary, K. Lozano, M. Chipara, P.M. Ajayan, Nanodiamond-based thermal fluids. ACS Appl. Mater. Interfaces 6, 4778–4785 (2014). doi:10.1021/am405575t

    Google Scholar 

  191. M.G. Ivanov, V.V. Kharlamov, V.V. Buznik, D.M. Ivanov, S.V. Pavlyshko, A.K. Tsvetnikov, Tribological properties of the grease containing polytetrafluoroethylene and ultrafine diamond. Friction Wear 25, 99–103 (2004). INSPEC:8537707

    Google Scholar 

  192. V.Y. Dolmatov, Detonation nanodiamonds in oils and lubricants. J. Superhard Mater. 32, 14–20 (2010). doi:10.3103/S1063457610010028

    Article  Google Scholar 

  193. V.I. Zhornik, V.A. Kukareko, M.A. Belotserkovsky, Tribomechanical Modification of Friction Surface by Running-In in Lubricants with Nano-Sized Diamonds (Nova Science Publishers, 2011)

    Google Scholar 

  194. M. Ivanov, D. Ivanov, Nanodiamond nanoparticles as additives to lubricants (Chap. 8), in Ultrananocrystalline Diamond, 2nd edn, ed. by O. Shenderova, D. Gruen (Elsevier, 2012)

    Google Scholar 

  195. C.C. Chou, S.H. Lee, Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear 269, 757–762 (2010). doi:10.1016/j.wear.2010.08.001

    Article  Google Scholar 

  196. M. Ivanov, Z. Mahbooba, D. Ivanov, S. Smirnov, S. Pavlyshko, E. Osawa, D. Brenner, O. Shenderova, Nanodiamond-based oil lubricants on steel-steel and stainless steel-hard alloy high load contact: investigation of friction surfaces. Nanosystems Phys. Chem. Math. 5, 160–166 (2014)

    Google Scholar 

  197. O. Elomaa, T.J. Hakala, V. Myllymäki, J. Oksanen, H. Ronkainen, V.K. Singh, J. Koskinen, Diam. Relat. Mater. 34, 89–94 (2013). doi:10.1016/j.diamond.2013.02.008

    Article  Google Scholar 

  198. E. Perevedentseva, Y.C. Lin, M. Jani, C.L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine 8, 2041–2060 (2013). doi:10.2217/NNM.13.183

    Article  Google Scholar 

  199. V.N. Mochalin, A. Pentecost, X.M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi, Adsorption of drugs on nanodiamond: toward development of a drug delivery platform mol. Pharmaceutics 10, 3728–3735 (2013). doi:10.1021/mp400213z

    Article  Google Scholar 

  200. D. Passeri, F. Rinaldi, C. Ingallina, M. Carafa, M. Rossi, M.L. Terranova, C. Marianecci, Biomedical applications of nanodiamonds: an overview. J. Nanosci. Nanotechnol. 15, 972–988 (2015). doi:10.1166/jnn.2015.9734

    Article  Google Scholar 

  201. P. Metzler, C. von Wilmowsky, B. Stadlinger, W. Zemann, K.A. Schlegel, S. Rosiwal, S. Rupprecht, J. Cranio-Maxillofac. Surg. 41, 532–538 (2013). doi:10.1016/j.jcms.2012.11.020

    Article  Google Scholar 

  202. A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22, 890–906 (2012). doi:10.1002/adfm.201102670

    Article  Google Scholar 

  203. E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011). doi:10.1126/scitranslmed.3001713

    Google Scholar 

  204. A. Alhaddad, M.P. Adam, J. Botsoa, G. Dantelle, S. Perruchas, T. Gacoin, C. Mansuy, S. Lavielle, C. Malvy, F. Treussart, J.R. Bertrand, Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7, 3087–3095 (2011). doi:10.1002/smll.201101193

    Article  Google Scholar 

  205. R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X.Y. Xu, X.Q. Zhang, H.J. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009). doi:10.1016/j.biomaterials.2009.07.004

    Article  Google Scholar 

  206. C. Gaillard, H.A. Girard, C. Falck, V. Paget, V. Simic, N. Hugolin, P. Bergonzo, S. Chevillard, J.C. Arnault, Peptide nucleic acid–nanodiamonds: covalent and stable conjugates for DNA targeting. RSC Advances 4, 3566–3572 (2014). doi:10.1039/c3ra45158e

    Article  Google Scholar 

  207. G. Reina, S. Orlanducci, C. Cairone, E. Tamburini, S. Lenti, I. Cianchetta, M. Rossi, M.L. Terranova, Rhodamine/nanodiamond as a system model for drug carrier. J. Nanosci. Nanotechnol. 15, 1022–1029 (2015). doi:10.1166/jnn.2015.9736

    Article  Google Scholar 

  208. B. Guan, F. Zou, J.F. Zhi, Nanodiamond as the pH responsive vehicle for an anticancer drug. Small 6, 1514–1519 (2010). doi:10.1002/smll.200902305

    Article  Google Scholar 

  209. A. Adnan, R. Lam, H. Chen, J. Lee, D. Schaffer, A. Barnard, G.C. Schatz, D. Ho, W.K. Liu, Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol. Pharm. 8, 368–374 (2011). doi:10.1021/mp1002398

    Article  Google Scholar 

  210. J. Yan, Y. Guo, A. Altawashi, B. Moosa, S. Lecommandoux, N.M. Khashab, Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New J. Chem. 36, 1479–1484 (2012). doi:10.1039/c2nj40226b

    Article  Google Scholar 

  211. V.N. Mochalin, A. Pentecost, X.M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi, Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10, 3728–3735 (2013). doi:10.1021/mp400213z

    Article  Google Scholar 

  212. T.B. Toh, D.K. Lee, W. Hou, L.N. Abdullah, J. Nguyen, D. Ho, E. Kai-Hua, Chow, nanodiamond—mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol. Pharm. 11, 2683–2691 (2014). doi:10.1021/mp5001108

    Article  Google Scholar 

  213. A.D. Salaam, P.T.J. Hwang, A. Poonawalla, H.N. Green, H. Jun, D. Dean, Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotechnology 25, 425103 (2014). doi:10.1088/0957-4484/25/42/425103

    Article  Google Scholar 

  214. L. Moore, E.K.H. Chow, E. Osawa, J.M. Bishop, D. Ho, Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 25, 3532–3541 (2013). doi:10.1002/adma.201300343

    Article  Google Scholar 

  215. I. Aharonovich, Diamond nanocrystals for photonics and sensing. Japan. J. Appl. Phys. 53, 05FA01 (2014). doi:10.7567/JJAP.53.05FA01

    Google Scholar 

  216. I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Molecular-sized fluorescent nanodiamonds. Nat. Nanotech. 9, 54–58 (2014). doi:10.1038/NNANO.2013.255

    Article  Google Scholar 

  217. V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009). doi:10.1021/ja9004514

    Article  Google Scholar 

  218. S. Vial, C. Mansuy, S. Sagan, T. Irinopoulou, F. Burlina, J.P. Boudou, G. Chassaing, S. Lavielle, Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chem-BioChem. 9, 2113–2119 (2008). doi:10.1002/cbic.200800247, 10.1039/c2nj40226b

    Google Scholar 

  219. Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotech. 3, 284–288 (2008). doi:10.1038/nnano.2008.99

    Article  Google Scholar 

  220. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). doi:10.1021/nl1021909

    Article  Google Scholar 

  221. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Milvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotech. 6, 358–363 (2011). doi:10.1038/nnano.2011.64

    Article  Google Scholar 

  222. D.A. Simpson, A.J. Thompson, M. Kowarsky, N.F. Zeeshan, M.S.J. Barson, L.T. Hall, Y. Yan, S. Kaufmann, B.C. Johnson, T. Ohshima, F. Caruso, R.E. Scholten, R.B. Saint, M.J. Murray, L.C.L. Hollenberg, In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomedical Optics Express 5, 1250–1261 (2014). doi:10.1364/BOE.5.001250

    Article  Google Scholar 

  223. Y.Y. Hui, L.J. Su, O.Y. Chen, Y.T. Chen, T.M. Liu, H.C. Chang, Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep. 4(5574), 1–7 (2014). doi:10.1038/srep05574

    Google Scholar 

  224. S.J. Hollister, W.L. Murphy, Scaffold Translation: Barriers Between Concept and Clinic. Tissue Eng. Part B Rev. 17, 459–474 (2011). doi:10.1089/ten.teb.2011.0251

    Article  Google Scholar 

  225. L. Moore, M. Gatica, H. Kim, E. Osawa, D. Ho, Multi-protein delivery by nanodiamonds promotes bone formation. J. Dent. Res. 92, 976–981 (2013). doi:10.1177/0022034513504952

    Article  Google Scholar 

  226. M. Monaco, M. Giugliano, Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J. Nanotechnol. 5, 1849–1863 (2014). doi:10.3762/bjnano.5.196

    Article  Google Scholar 

  227. S. Suliman, Z. Xing, X. Wu, Y. Xue, T.O. Pedersen, Y. Sun, A.P. Døskeland, J. Nickel, T. Waag, H. Lygre, A. Finne-Wistrand, D. Steinmüller-Nethl, A. Krueger, K. Mustafa, Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J. Controlled Release 197, 148–157 (2015). doi:10.1016/j.jconrel.2014.11.003

    Article  Google Scholar 

  228. H. Kato, J. Hees, R. Hoffmann, M. Wolfer, N. Yang, S. Yamasaki et al., Diamond foam electrodes for electrochemical applications. Electrochem. Commun. 33, 88–91 (2013). doi:10.1016/j.elecom.2013.04.028

    Article  Google Scholar 

  229. F. Gao, M.T. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon N. Y. 80, 833–840 (2014). doi:10.1016/j.carbon.2014.09.007

    Article  Google Scholar 

  230. K. Purtov, A. Petunin, E. Inzhevatkin, A. Burov, N. Ronzhin, A. Puzyr, V. Bondar, Biodistribution of different sized nanodiamonds in mice. J. Nanosci. Nanotechnol. 15, 1070–1075 (2015). doi:10.1166/jnn.2015.9746

    Article  Google Scholar 

  231. L. Moore, V. Grobarova, H. Shen, H.B. Man, J. Mıcova, M. Ledvina, J. Stursa, M. Nesladek, A. Fiserova, D. Ho, Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale 6, 11712–11721 (2014). doi:10.1039/c4nr02570a

    Article  Google Scholar 

  232. D. Zhu, L.H. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013). doi:10.1038/NMAT3696

    Article  Google Scholar 

  233. L.H. Zhang, D. Zhu, G.M. Nathansson, R.J. Hamers, Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew. Chem-Int Ed. 53, 9746 (2014). doi:10.1002/anie.201404328

    Article  Google Scholar 

Download references

Acknowledgments

J.C. Arnault would like to thank his co-workers involved in surface modifications of nanodiamonds at CEA LIST, especially H.A. Girard, C. Gesset and T. Petit. He also acknowledges his collaborators from other laboratories for fruitful interactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Arnault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arnault, J.C. (2016). Nanodiamonds: From Synthesis and Purification to Deposition Techniques, Hybrids Fabrication and Applications. In: Yang, N., Jiang, X., Pang, DW. (eds) Carbon Nanoparticles and Nanostructures. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-28782-9_1

Download citation

Publish with us

Policies and ethics