Skip to main content

Hidden dimensions in an Hamiltonian system on networks

  • Chapter
  • First Online:
  • 961 Accesses

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 15))

Abstract

In this chapter we show how the topology of a particular network model influences the thermodynamic behavior of a dynamical system defined on it, namely, the Hamiltonian XY rotor model. More specifically, following an introduction, we first consider the regular networks described in De Nigris and Leoncini (EPL, 101(1):10002, 2013). We show analytically that by reducing the degree to only two links per node, long-range order is still present, provided that one of the links connects two nodes that are “far enough,” that is, beyond the \(\sqrt{ N}\) threshold. The results are then confirmed numerically. Given these findings, we return to the network topology. We introduce the notion of an effective (fractal-like) network dimension and devise a method of building a class of networks (lace networks) with a given underlying dimension, \(d \in [1,\:+\infty [\), that can be tuned either by using a rewiring probability or by changing with the considered system’s size. Our findings point to d c  = 2 as the critical dimension between networks displaying long-range order and those where it is absent. We show as well that the critical so-called chaotic states arising in De Nigris and Leoncini (EPL, 101(1):10002, 2013) can be recovered by building lace networks with d = 2. We have therefore devised a more generic and general way to construct networks capable of sustaining infinite susceptibility over a finite range of energies, i.e., possibly robust to eventual external quantitative thermal variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newman MEJ (2010) Networks: an introduction Oxford University Press, Oxford

    Google Scholar 

  2. Barré J, Mukamel D, Ruffo S (2001) Inequivalence of ensembles in a system with long-range interactions. Phys Rev Lett 87:030601

    Article  Google Scholar 

  3. Leyvraz F, Ruffo S (2002) Ensemble inequivalence in systems with long-range interactions. J Phys A 35:285–294

    Article  MathSciNet  MATH  Google Scholar 

  4. Torcini A, Antoni M (1999) Equilibrium and dynamical properties of two-dimensional n-body systems with long-range attractive interactions. Phys Rev E 59:2746

    Article  Google Scholar 

  5. Touchette H, Ellis RS, Turkington B (2004) An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Phys A Stat Mech Appl 340(13):138–146. News and Expectations in Thermostatistics

    Google Scholar 

  6. Lynden-Bell D (1999) Negative specific heat in astronomy, physics and chemistry. Phys A Stat Mech Appl 263(1–4):293–304. Proceedings of the 20th IUPAP International Conference on Statistical Physics

    Google Scholar 

  7. Hertel P, Thirring W (1971) A soluble model for a system with negative specific heat. Ann Phys 63(2):520–533

    Article  Google Scholar 

  8. De Nigris S, Leoncini X (2013) Emergence of a non-trivial fluctuating phase in the XY-rotors model on regular networks. EPL 101(1):10002

    Article  Google Scholar 

  9. De Nigris S, Leoncini X (2013) Critical behavior of the XY-rotor model on regular and small-world networks. Phys Rev E 88(1):012131

    Article  Google Scholar 

  10. Lee DH, Joannopoulos JD, Negele JW, Landau DP (1984) Discrete-symmetry breaking and novel critical phenomena in an antiferromagnetic planar (XY) model in two dimensions. Phys Rev Lett 52(6):433–436

    Article  Google Scholar 

  11. Loft R, DeGrand TA (1987) Numerical simulation of dynamics in the XY model. Phys Rev B 35(16):8528

    Article  Google Scholar 

  12. Kim J-K (1994) Novel application of finite-size scaling: a numerical study of the two-dimensional XY model. Europhys Lett 28(3):211

    Article  Google Scholar 

  13. Jain S, Young AP (1986) Monte Carlo simulations of XY spin glasses. J Phys C Solid State Phys 19(20):3913

    Article  Google Scholar 

  14. Bramwell ST, Fortin J-Y, Holdsworth PCW, Peysson S, Pinton J-F, Portelli B, Sellitto M (2001) Magnetic fluctuations in the classical XY model: The origin of an exponential tail in a complex system. Phys Rev E 63(4):041106

    Article  Google Scholar 

  15. Chaikin PM, Lubensky TC (2000) Principles of condensed matter physics. Cambridge University Press, Cambridge

    Google Scholar 

  16. Mermin D, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133–1136

    Article  Google Scholar 

  17. Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C Solid State Phys 6:1181–1203

    Article  Google Scholar 

  18. Berezinskii VL (1971) Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov Phys JETP 32:494

    MathSciNet  Google Scholar 

  19. Janke W, Nather K (1991) Numerical evidence for Kosterlitz-Thouless transition in the 2D XY Villain model. Phys Lett A 157(1):11–16

    Article  Google Scholar 

  20. Leoncini X, Verga AD, Ruffo S (1998) Hamiltonian dynamics and the phase transition of the XY model. Phys Rev E 57(6):6377

    Article  Google Scholar 

  21. Gupta R, DeLapp J, Batrouni GG, Fox GC, Baillie CF, Apostolakis J (1988) Phase transition in the 2D XY model. Phys Rev Lett 61:1996–1999

    Article  Google Scholar 

  22. Amit DJ, Goldschmidt YY, Grinstein S (1980) Renormalisation group analysis of the phase transition in the 2d coulomb gas, sine-gordon theory and xy-model. J Phys A Math General 13(2):585

    Article  MathSciNet  Google Scholar 

  23. Butera P, Comi M (1993) Quantitative study of the kosterlitz-thouless phase transition in an XY model of two-dimensional plane rotators: High-temperature expansions to order β 20. Phys Rev B 47:11969–11979

    Article  Google Scholar 

  24. Gottlob AP, Hasenbusch M (1993) Critical behaviour of the 3D XY-model: a monte carlo study. Phys A Stat Mech Appl 201(4):593–613

    Article  Google Scholar 

  25. Hasenbusch M, Meyer S (1990) Critical exponents of the 3D XY model from cluster update monte carlo. Phys Lett B 241(2):238–242

    Article  Google Scholar 

  26. Hasenbusch M, Török T (1999) High-precision monte carlo study of the 3D XY -universality class. J Phys A Math General 32(36):6361

    Article  MathSciNet  MATH  Google Scholar 

  27. Campa A, Dauxois T, Ruffo S (2009) Statistical mechanics and dynamics of solvable models with long-range interactions. Phys Rep 480:57–159

    Article  MathSciNet  Google Scholar 

  28. Antoni M, Ruffo S (1995) Clustering and relaxation in Hamiltonian long-range dynamics. Phys Rev E 52(3):2361

    Article  Google Scholar 

  29. Chavanis PH, Vatteville J, Bouchet F (2005) Dynamics and thermodynamics of a simple model similar to self-gravitating systems: the HMF model. Eur Phys J B 46(1):61–99

    Article  Google Scholar 

  30. Dauxois T, Ruffo S, Arimondo E, Wilkens M (eds) (2002) Dynamics and thermodynamics of systems with long range interactions, vol 602 of Lect. Not. Phys.. Springer, Berlin

    Google Scholar 

  31. Kac M, Uhlenbeck GE, Hemmer PC (1963) On the van der Waals theory of the Vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J Math Phys 4:216

    Google Scholar 

  32. Campa A, Giansanti A, Moroni D (2003) Canonical solution of classical magnetic models with long-range couplings. J Phys A Math Gen 36:6897–6921

    Article  MathSciNet  MATH  Google Scholar 

  33. Antoni M, Hinrichsen H, Ruffo S (2002) On the microcanonical solution of a system of fully coupled particles. Chaos Solitons Fractals 13(3):393–399

    Article  MathSciNet  MATH  Google Scholar 

  34. Velazquez L, Sospedra R, Castro J, Guzman F (2003) On the dynamical anomalies in the hamiltonian mean field model. arXiv preprint cond-mat/0302456

    Google Scholar 

  35. Ciani A, Ruffo S, Fanelli D (2010) Long-range interaction, stochasticity and fractional dynamics: dedication to George M. Zaslavsky (1935-2008). HEP and Springer, Beijing

    Google Scholar 

  36. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  37. Leoncini X, Verga A (2001) Dynamical approach to the microcanonical ensemble. Phys Rev E 64(6):066101

    Article  Google Scholar 

  38. McLachlan RI, Atela P (1992) The accuracy of symplectic integrators. Nonlinearity 5(2):541

    Article  MathSciNet  MATH  Google Scholar 

  39. Newman MEJ, Watts DJ (1999) Scaling and percolation in the small-world network model. Phys Rev E 60(6):7332

    Article  Google Scholar 

  40. Baglietto G, Albano EV, Candia J (2013) Complex Network Structure of Flocks in the Standard Vicsek Model. J Stat Phys 1–26

    Google Scholar 

  41. Havlin S, Bunde A (1991) Fractals and disordered systems. Springer, Berlin

    MATH  Google Scholar 

  42. Kleinberg JM (2000) The small-world phenomenon: An algorithmic perspective. In Proceedings of the thirty-second annual ACM symposium on theory of computing, STOC ’00, 163–170. ACM, New York, NY, USA

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah de Nigris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Nigris, S., Leoncini, X. (2016). Hidden dimensions in an Hamiltonian system on networks. In: Afraimovich, V., Machado, J., Zhang, J. (eds) Complex Motions and Chaos in Nonlinear Systems. Nonlinear Systems and Complexity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-28764-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28764-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28762-1

  • Online ISBN: 978-3-319-28764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics