Skip to main content

Guidelines for the Delineation of Primary Tumor Target Volume in Lung Cancer

  • Chapter
  • First Online:
Book cover Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies

Abstract

Lung cancer is the leading cause of cancer death in males and second leading cause in females. Radiotherapy (RT) plays an important role in the treatment of lung cancer in every stage either with curative or palliative intent. In the era of three-dimensional conformal RT (3D CRT), intensity-modulated radiation therapy (IMRT), and stereotactic ablative RT (SABR), accurate target and normal tissue delineation have been the subjects of several studies. Many reports have been published on the simulation, delineation, and treatment planning techniques. As the lungs have remarkable motion because of respiration, tumor tracking is considerable while treating lung cancer with RT. This chapter aims to guide the radiation oncologists for the accurate delineation of the target volumes in light of the guidelines published on this issue as well as tumor-tracking techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevens CW, Munden RF, Forster KM, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys. 2001;51:62–8.

    Article  CAS  PubMed  Google Scholar 

  2. van Sornsen de Koste JR, Lagerwaard FJ, Schuchhard-Schipper RH, et al. Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer – an analysis of data generated using ‘slow’ CT scans. Radiother Oncol. 2001;61:93–9.

    Article  CAS  PubMed  Google Scholar 

  3. Sixel KE, Ruschin M, Tirona R, Cheung PC. Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes. Int J Radiat Oncol Biol Phys. 2003;57:717–23.

    Article  PubMed  Google Scholar 

  4. Senan S, De Ruysscher D, Giraud P, et al. Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. Radiother Oncol. 2004;71:139–46.

    Article  PubMed  Google Scholar 

  5. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37:4078–101.

    Article  PubMed  Google Scholar 

  6. International Commission on Radiation Units and Measurements. ICRU report 50: prescribing, recording, and reporting photon beam therapy. Bethesda: Maryland, USA. 1993.

    Google Scholar 

  7. International Commission on Radiation Units and Measurements. ICRU report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda: Maryland, USA. 1999.

    Google Scholar 

  8. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33:3874–900.

    Article  PubMed  Google Scholar 

  9. Van de Steene J, Van den Heuvel F, Bel A, et al. Electronic portal imaging with on-line correction of setup error in thoracic irradiation: clinical evaluation. Int J Radiat Oncol Biol Phys. 1998;40:967–76.

    Article  PubMed  Google Scholar 

  10. Giraud P, De Rycke Y, Dubray B, et al. Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. Int J Radiat Oncol Biol Phys. 2001;51:1081–92.

    Article  CAS  PubMed  Google Scholar 

  11. Halperin R, Pobinson D, Murray B, et al. Fluoroscopy for assessment of physiologic movement of lung tumors, a pitfall of clinical practice? Proceeding of Innovative Technology in Radiation Medicine Toronto, October 22–27. Radioth Oncol. 2002;65:s1. abstract 87.

    Google Scholar 

  12. Jouin A, Pourel N. Target volume margins for lung cancer: internal target volume/clinical target volume. Cancer Radiother. 2013;17:428–33.

    Article  CAS  PubMed  Google Scholar 

  13. Gomez DR, Liao Z. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). In: Lee NY, Lu JJ, editors. Target volume delineation and field setup- a practical guide for conformal and intensity-modulated radiation therapy. 1st ed. Berlin: Springer; 2013. p. 87–103.

    Google Scholar 

  14. Lagerwaard FJ, Van Sornsen de Koste JR, Nijssen-Visser MR, et al. Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys. 2001;51:932–7.

    Article  CAS  PubMed  Google Scholar 

  15. Van Sornsen de Koste JRLF, de Boer HC, et al. Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Biol Phys. 2003;55:1394–9.

    Article  Google Scholar 

  16. Yamada K, Soejima T, Yoden E, et al. Improvement of three-dimensional treatment planning models of small lung targets using high-speed multi-slice computed tomographic imaging. Int J Radiat Oncol Biol Phys. 2002;54:1210–6.

    Article  PubMed  Google Scholar 

  17. Senan S, Lagerwaard FJ, Nijssen-Visser MR. Incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys. 2002;52:1142–3; author reply 1144.

    Article  PubMed  Google Scholar 

  18. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52:1389–99.

    Article  PubMed  Google Scholar 

  19. Ford EC, Mageras GS, Yorke E, et al. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2002;52:522–31.

    Article  CAS  PubMed  Google Scholar 

  20. Vedam SS, Keall PJ, Kini VR, et al. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48:45–62.

    Article  CAS  PubMed  Google Scholar 

  21. Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29:334–44.

    Article  PubMed  Google Scholar 

  22. Shirato H, Harada T, Harabayashi T, et al. Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56:240–7.

    Article  PubMed  Google Scholar 

  23. Harada T, Shirato H, Ogura S, et al. Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer. 2002;95:1720–7.

    Article  PubMed  Google Scholar 

  24. Murphy MJ, Martin D, Whyte R, et al. The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int J Radiat Oncol Biol Phys. 2002;53:475–82.

    Article  PubMed  Google Scholar 

  25. O’Dell WG, Schell MC, Reynolds D, Okunieff R. Dose broadening due to target position variability during fractionated breath-held radiation therapy. Med Phys. 2002;29:1430–7.

    Article  PubMed  Google Scholar 

  26. Hara R, Itami J, Kondo T, et al. Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother Oncol. 2002;63:159–63.

    Article  PubMed  Google Scholar 

  27. Barnes EA, Murray BR, Robinson DM, et al. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys. 2001;50:1091–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44:911–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cheung PC, Sixel KE, Tirona R, Ung YC. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC). Int J Radiat Oncol Biol Phys. 2003;57:1437–42.

    Article  PubMed  Google Scholar 

  30. Onishi H, Kuriyama K, Komiyama T, et al. A new irradiation system for lung cancer combining linear accelerator, computed tomography, patient self-breath-holding, and patient-directed beam-control without respiratory monitoring devices. Int J Radiat Oncol Biol Phys. 2003;56:14–20.

    Article  PubMed  Google Scholar 

  31. Harris KM, Adams H, Lloyd DC, Harvey DJ. The effect on apparent size of simulated pulmonary nodules of using three standard CT window settings. Clin Radiol. 1993;47:241–4.

    Article  CAS  PubMed  Google Scholar 

  32. Nestle U, Walter K, Schmidt S, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys. 1999;44:593–7.

    Article  CAS  PubMed  Google Scholar 

  33. Caldwell CB, Mah K, Ung YC, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys. 2001;51:923–31.

    Article  CAS  PubMed  Google Scholar 

  34. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93.

    CAS  PubMed  Google Scholar 

  35. Bakheet SM, Saleem M, Powe J, et al. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med. 2000;25:273–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pitman AG, Hicks RJ, Binns DS, et al. Performance of sodium iodide based (18)F-fluorodeoxyglucose positron emission tomography in the characterization of indeterminate pulmonary nodules or masses. Br J Radiol. 2002;75:114–21.

    Article  CAS  PubMed  Google Scholar 

  37. Hanna GG, McAleese J, Carson KJ, et al. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Int J Radiat Oncol Biol Phys. 2010;77:24–30.

    Article  PubMed  Google Scholar 

  38. De Ruysscher D, Wanders S, Minken A, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol. 2005;77:5–10.

    Article  PubMed  Google Scholar 

  39. van Elmpt W, De Ruysscher D, van der Salm A, et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol. 2012;104:67–71.

    Article  PubMed  Google Scholar 

  40. Nestle U, Hellwig D, Schmidt S, et al. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol. 2002;4:257–63.

    Article  PubMed  Google Scholar 

  41. Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.

    Article  PubMed  Google Scholar 

  42. Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59:4–5.

    Article  PubMed  Google Scholar 

  43. Erdi YE, Mawlawi O, Larson SM, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng Y, Sun X, Wang J, et al. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer. Oncol Lett. 2014;7:1015–20.

    PubMed  PubMed Central  Google Scholar 

  45. Jin Z, Arimura H, Shioyama Y, et al. Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method. J Radiat Res. 2014;55:1153–62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kong FM XY, Machtay M, Werner-Wasik M, et al. Atlases for CT gross tumor volume (CTGTV) and PET metabolic tumor volume (PETMTV) for RTOG 1106. In: RTOG Lung Steering Committee and ATIC Committee.

    Google Scholar 

  47. Kies MS, Mira JG, Crowley JJ, et al. Multimodal therapy for limited small-cell lung cancer: a randomized study of induction combination chemotherapy with or without thoracic radiation in complete responders; and with wide-field versus reduced-field radiation in partial responders: a Southwest Oncology Group Study. J Clin Oncol. 1987;5:592–600.

    CAS  PubMed  Google Scholar 

  48. Liengswangwong V, Bonner JA, Shaw EG, et al. Limited-stage small-cell lung cancer: patterns of intrathoracic recurrence and the implications for thoracic radiotherapy. J Clin Oncol. 1994;12:496–502.

    CAS  PubMed  Google Scholar 

  49. Bonner JA, Sloan JA, Shanahan TG, et al. Phase III comparison of twice-daily split-course irradiation versus once-daily irradiation for patients with limited stage small-cell lung carcinoma. J Clin Oncol. 1999;17:2681–91.

    CAS  PubMed  Google Scholar 

  50. Brodin O, Rikner G, Steinholtz L, Nou E. Local failure in patients treated with radiotherapy and multidrug chemotherapy for small cell lung cancer. Acta Oncol. 1990;29:739–46.

    Article  CAS  PubMed  Google Scholar 

  51. Arriagada R, Pellae-Cosset B, Ladron de Guevara JC, et al. Alternating radiotherapy and chemotherapy schedules in limited small cell lung cancer: analysis of local chest recurrences. Radiother Oncol. 1991;20:91–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mira JG, Livingston RB. Evaluation and radiotherapy implications of chest relapse patterns in small cell lung carcinoma treated with radiotherapy-chemotherapy: study of 34 cases and review of the literature. Cancer. 1980;46:2557–65.

    Article  CAS  PubMed  Google Scholar 

  53. Jenkins P, Milliner R, Latimer P. Shrinkage of locally advanced non-small-cell lung cancers in response to induction chemotherapy: implications for radiotherapy treatment planning. Int J Radiat Oncol Biol Phys. 2007;69:993–1000.

    Article  PubMed  Google Scholar 

  54. Kara M, Sak SD, Orhan D, Yavuzer S. Changing patterns of lung cancer; (3/4 in.) 1.9 cm; still a safe length for bronchial resection margin? Lung Cancer. 2000;30:161–8.

    Article  CAS  PubMed  Google Scholar 

  55. Massard G, Doddoli C, Gasser B, et al. Prognostic implications of a positive bronchial resection margin. Eur J Cardiothorac Surg. 2000;17:557–65.

    Article  CAS  PubMed  Google Scholar 

  56. Snijder RJ, Brutel de la Riviere A, Elbers HJ, van den Bosch JM. Survival in resected stage I lung cancer with residual tumor at the bronchial resection margin. Ann Thorac Surg. 1998;65:212–6.

    Article  CAS  PubMed  Google Scholar 

  57. Soorae AS, Stevenson HM. Survival with residual tumor on the bronchial margin after resection for bronchogenic carcinoma. J Thorac Cardiovasc Surg. 1979;78:175–80.

    CAS  PubMed  Google Scholar 

  58. Rosell R, Gomez-Codina J, Camps C, et al. Preresectional chemotherapy in stage IIIA non-small-cell lung cancer: a 7-year assessment of a randomized controlled trial. Lung Cancer. 1999;26:7–14.

    Article  CAS  PubMed  Google Scholar 

  59. Bradley JD, Paulus R, Graham MV, et al. Phase II trial of postoperative adjuvant paclitaxel/carboplatin and thoracic radiotherapy in resected stage II and IIIA non-small-cell lung cancer: promising long-term results of the Radiation Therapy Oncology Group – RTOG 9705. J Clin Oncol. 2005;23:3480–7.

    Article  CAS  PubMed  Google Scholar 

  60. Grutters JP, Kessels AG, Pijls-Johannesma M, et al. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95:32–40.

    Article  CAS  PubMed  Google Scholar 

  61. Grills IS, Fitch DL, Goldstein NS, et al. Clinicopathologic analysis of microscopic extension in lung adenocarcinoma: defining clinical target volume for radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69:334–41.

    Article  PubMed  Google Scholar 

  62. Giraud P, Antoine M, Larrouy A, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys. 2000;48:1015–24.

    Article  CAS  PubMed  Google Scholar 

  63. Craig T, Battista J, Moiseenko V, Van Dyk J. Considerations for the implementation of target volume protocols in radiation therapy. Int J Radiat Oncol Biol Phys. 2001;49:241–50.

    Article  CAS  PubMed  Google Scholar 

  64. Grills IS, Hugo G, Kestin LL, et al. Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:1045–56.

    Article  PubMed  Google Scholar 

  65. Slotman BJ, Lagerwaard FJ, Senan S. 4D imaging for target definition in stereotactic radiotherapy for lung cancer. Acta Oncol. 2006;45:966–72.

    Article  PubMed  Google Scholar 

  66. Shah C, Grills IS, Kestin LL, et al. Intrafraction variation of mean tumor position during image-guided hypofractionated stereotactic body radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 2012;82:1636–41.

    Article  PubMed  Google Scholar 

  67. Timmerman R, Abdulrahman R, Kavanagh BD, Meyer JL. Lung cancer: a model for implementing stereotactic body radiation therapy into practice. Front Radiat Ther Oncol. 2007;40:368–85.

    Article  PubMed  Google Scholar 

  68. Beyzadeoglu M, Ozyigit G, Ebruli C, editors. Basic radiation oncology. Berlin: Springer; 2010. p. 303–28.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melis Gultekin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ozyigit, G., Gultekin, M., Sari, S.Y., Hurmuz, P., Yazici, G. (2016). Guidelines for the Delineation of Primary Tumor Target Volume in Lung Cancer. In: Ozyigit, G., Selek, U., Topkan, E. (eds) Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-28761-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28761-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28759-1

  • Online ISBN: 978-3-319-28761-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics