Skip to main content

Target Volume Delineation Guidelines in Malignant Pleural Mesothelioma

  • Chapter
  • First Online:
Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies

Abstract

Malignant pleural mesothelioma (MPM) is a rare disease with poor prognosis. Solitary treatment methods were not found to be effective, and the treatment of choice is trimodality treatment including surgery, chemotherapy, and radiotherapy (RT). The conventional RT field is the whole ipsilateral hemithorax. MPM has a tendency to recur in drain sites; therefore, all previous instrumentation sites should be included in the RT field. This chapter aims to guide the radiation oncologists for the delineation of target volumes and critical organs in the treatment of MPM while treating with three-dimensional RT and intensity-modulated radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rusch VW. Pleurectomy/decortication and adjuvant therapy for malignant mesothelioma. Chest. 1993;103:382S–4.

    Article  CAS  PubMed  Google Scholar 

  2. Gordon Jr W, Antman KH, Greenberger JS, et al. Radiation therapy in the management of patients with mesothelioma. Int J Radiat Oncol Biol Phys. 1982;8:19–25.

    Article  PubMed  Google Scholar 

  3. Boutin C, Rey F, Viallat JR. Prevention of malignant seeding after invasive diagnostic procedures in patients with pleural mesothelioma. A randomized trial of local radiotherapy. Chest. 1995;108:754–8.

    Article  CAS  PubMed  Google Scholar 

  4. Pehlivan B, Topkan E, Onal C, et al. Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma. Radiat Oncol. 2009;4:35.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sugarbaker DJ, Garcia JP. Multimodality therapy for malignant pleural mesothelioma. Chest. 1997;112:272S–5.

    Article  CAS  PubMed  Google Scholar 

  6. Ahamad A, Stevens CW, Smythe WR, et al. Promising early local control of malignant pleural mesothelioma following postoperative intensity modulated radiotherapy (IMRT) to the chest. Cancer J. 2003;9:476–84.

    Article  PubMed  Google Scholar 

  7. Ahamad A, Stevens CW, Smythe WR, et al. Intensity-modulated radiation therapy: a novel approach to the management of malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys. 2003;55:768–75.

    Article  PubMed  Google Scholar 

  8. Yajnik S, Rosenzweig KE, Mychalczak B, et al. Hemithoracic radiation after extrapleural pneumonectomy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys. 2003;56:1319–26.

    Article  PubMed  Google Scholar 

  9. Forster KM, Smythe WR, Starkschall G, et al. Intensity-modulated radiotherapy following extrapleural pneumonectomy for the treatment of malignant mesothelioma: clinical implementation. Int J Radiat Oncol Biol Phys. 2003;55:606–16.

    Article  PubMed  Google Scholar 

  10. Scherpereel A, Astoul P, Baas P, et al. Guidelines of the European Respiratory Society and the European Society of Thoracic Surgeons for the management of malignant pleural mesothelioma. Eur Respir J. 2010;35:479–95.

    Article  CAS  PubMed  Google Scholar 

  11. Pan CC, Kavanagh BD, Dawson LA, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76:S94–100.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kirkpatrick JP, Milano M, Constine LS, Vujaskovic Z, Marks LB. Late effects and QUANTEC. In: Halperin EC, Wazer D, Perez C, Brady LW, editors. Principles and practice of radiation oncology. 6th ed. Philadelphia: Lippincott Williams 2013. p. 296–328.

    Google Scholar 

  13. Lawrence TS, Ten Haken RK, Kessler ML, et al. The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys. 1992;23:781–8.

    Article  CAS  PubMed  Google Scholar 

  14. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    Article  CAS  PubMed  Google Scholar 

  15. Russell AH, Clyde C, Wasserman TH, et al. Accelerated hyperfractionated hepatic irradiation in the management of patients with liver metastases: results of the RTOG dose escalating protocol. Int J Radiat Oncol Biol Phys. 1993;27:117–23.

    Article  CAS  PubMed  Google Scholar 

  16. Schefter TE, Kavanagh BD, Timmerman RD, et al. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62:1371–8.

    Article  PubMed  Google Scholar 

  17. Kim TH, Kim DY, Park JW, et al. Dose-volumetric parameters predicting radiation-induced hepatic toxicity in unresectable hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67:225–31.

    Article  PubMed  Google Scholar 

  18. Dawson LA, Normolle D, Balter JM, et al. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53:810–21.

    Article  PubMed  Google Scholar 

  19. Czito BG, Palta M, Willett CG. Stomach cancer. In: Halperin EC, Wazer D, Perez C, Brady LW, editors. Principles and practice of radiation oncology. 6th ed. Philadelphia: Lippincott Williams 2012. p. 1165–88.

    Google Scholar 

  20. Goodman KA, Regine WF, Dawson LA, et al. Radiation Therapy Oncology Group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys. 2012;83:901–8.

    Article  PubMed  Google Scholar 

  21. Reiff JE, Werner-Wasik M, Valicenti RK, Huq MS. Changes in the size and location of kidneys from the supine to standing positions and the implications for block placement during total body irradiation. Int J Radiat Oncol Biol Phys. 1999;45:447–9.

    Article  CAS  PubMed  Google Scholar 

  22. Verheij M, Dewit LG, Valdes Olmos RA, Arisz L. Evidence for a renovascular component in hypertensive patients with late radiation nephropathy. Int J Radiat Oncol Biol Phys. 1994;30:677–83.

    Article  CAS  PubMed  Google Scholar 

  23. Dawson LA, Kavanagh BD, Paulino AC, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76:S108–15.

    Article  PubMed  Google Scholar 

  24. Schneider DP, Marti HP, Von Briel C, et al. Long-term evolution of renal function in patients with ovarian cancer after whole abdominal irradiation with or without preceding cisplatin. Ann Oncol. 1999;10:677–83.

    Article  CAS  PubMed  Google Scholar 

  25. Willett CG, Tepper JE, Orlow EL, Shipley WU. Renal complications secondary to radiation treatment of upper abdominal malignancies. Int J Radiat Oncol Biol Phys. 1986;12:1601–4.

    Article  CAS  PubMed  Google Scholar 

  26. Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995;31:1249–56.

    Article  CAS  PubMed  Google Scholar 

  27. Flentje M, Hensley F, Gademann G, et al. Renal tolerance to nonhomogenous irradiation: comparison of observed effects to predictions of normal tissue complication probability from different biophysical models. Int J Radiat Oncol Biol Phys. 1993;27:25–30.

    Article  CAS  PubMed  Google Scholar 

  28. Kost S, Dorr W, Keinert K, et al. Effect of dose and dose-distribution in damage to the kidney following abdominal radiotherapy. Int J Radiat Biol. 2002;78:695–702.

    Article  CAS  PubMed  Google Scholar 

  29. Matzinger O, Gerber E, Bernstein Z, et al. EORTC-ROG expert opinion: radiotherapy volume and treatment guidelines for neoadjuvant radiation of adenocarcinomas of the gastroesophageal junction and the stomach. Radiother Oncol. 2009;92:164–75.

    Article  PubMed  Google Scholar 

  30. Cheng JC, Schultheiss TE, Wong JY. Impact of drug therapy, radiation dose, and dose rate on renal toxicity following bone marrow transplantation. Int J Radiat Oncol Biol Phys. 2008;71:1436–43.

    Article  CAS  PubMed  Google Scholar 

  31. Jansen EP, Saunders MP, Boot H, et al. Prospective study on late renal toxicity following postoperative chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys. 2007;67:781–5.

    Article  CAS  PubMed  Google Scholar 

  32. Senan S, van de Pol M. Considerations for post-operative radiotherapy to the hemithorax following extrapleural pneumonectomy in malignant pleural mesothelioma. Lung Cancer. 2004;45 Suppl 1:S93–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezin Yuce Sari MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ozyigit, G., Hurmuz, P., Sari, S.Y., Yazici, G., Gultekin, M. (2016). Target Volume Delineation Guidelines in Malignant Pleural Mesothelioma. In: Ozyigit, G., Selek, U., Topkan, E. (eds) Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-28761-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28761-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28759-1

  • Online ISBN: 978-3-319-28761-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics