Skip to main content

Selection Criteria for Definitive Treatment Approach in Thoracic Malignancies: Radiation Oncology Perspective

  • Chapter
  • First Online:
  • 1096 Accesses

Abstract

Although surgical resection is directly related with anatomic boundaries and as a summary an all-or-none modality, even surgical prognosticators to define post-resection functional status could remain suboptimal. Radiotherapy, on the other site, is not an anatomical dissection, not a straightforward modality, and cannot be easily defined in numbers because of lack of correlation of effected anatomic units and heterogeneity of the effect on each unit. So evaluation before radiotherapy is overall a risk assessment with the baseline functional status and radiotherapy-induced expected loss in the function. Radiotherapy-triggered changes are gradual over time, sometimes as unusual reactions or hypersensitivity pneumonitis, and the compensation by the unirradiated lung is unpredictable. Overall, a radiation oncologist is expected to minimize the potential toxicity risks in an environment of various combinations of medical inoperability, poor pulmonary functionality, riskily localized or large parenchyma endangering bulky tumors, etc. and is mostly asked to be prepared to accept potential morbidities in this referred population with great expectations who will face a certain death if not treated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Woel RT, Munley MT, Hollis D, Fan M, Bentel G, Anscher MS, et al. The time course of radiation therapy-induced reductions in regional perfusion: a prospective study with >5 years of follow-up. Int J Radiat Oncol Biol Phys. 2002;52(1):58–67. PubMed Epub 2002/01/05. eng.

    Article  PubMed  Google Scholar 

  2. Seppenwoolde Y, Muller SH, Theuws JC, Baas P, Belderbos JS, Boersma LJ, et al. Radiation dose-effect relations and local recovery in perfusion for patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;47(3):681–90. PubMed Epub 2000/06/06. eng.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Ma J, Zhou S, Hubbs JL, Wong TZ, Folz RJ, et al. Radiation-induced reductions in regional lung perfusion: 0.1–12 year data from a prospective clinical study. Int J Radiat Oncol Biol Phys. 2010;76(2):425–32. PubMed Epub 2009/07/28. eng.

    Article  PubMed  Google Scholar 

  4. Farr KP, Kallehauge JF, Møller DS, Khalil AA, Kramer S, Bluhme H, et al. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study. Radiother Oncol. 2015;117(1):9–16. Epub 2015/08/21.eng

    Google Scholar 

  5. Brunelli A, Charloux A, Bolliger CT, Rocco G, Sculier JP, Varela G, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J. 2009;34(1):17–41. PubMed Epub 2009/07/02. eng.

    Article  CAS  PubMed  Google Scholar 

  6. Ueki N, Matsuo Y, Togashi Y, Kubo T, Shibuya K, Iizuka Y, et al. Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival after stereotactic body radiation therapy for lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2015;10(1):116–25. PubMed Epub 2014/11/08. eng.

    CAS  Google Scholar 

  7. Nagano T, Kotani Y, Fujii O, Demizu Y, Niwa Y, Ohno Y, et al. A case of acute exacerbation of idiopathic pulmonary fibrosis after proton beam therapy for non-small cell lung cancer. Jpn J Clin Oncol. 2012;42(10):965–9. PubMed Epub 2012/07/25. eng.

    Article  PubMed  Google Scholar 

  8. Protocol N-B. A Phase 1 study of stereotactic body radiotherapy (SBRT) for the treatment of multiple metastases. Available from: https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=1311.

  9. Protocol R. A Randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. 2015. Available from: https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0915.

  10. Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(17):2758–65. PubMed Epub 2009/05/01. eng.

    Article  Google Scholar 

  11. Raz DJ, Zell JA, Ou SH, Gandara DR, Anton-Culver H, Jablons DM. Natural history of stage I non-small cell lung cancer: implications for early detection. Chest. 2007;132(1):193–9. PubMed Epub 2007/05/17. eng.

    Article  PubMed  Google Scholar 

  12. Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman BJ, Senan S. Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non-small-cell lung cancer: a population-based time-trend analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(35):5153–9. PubMed Epub 2010/11/03. eng.

    Article  Google Scholar 

  13. Kim H, Lussier YA, Noh OK, Li H, Oh YT, Heo J. Prognostic implication of pulmonary function at the beginning of postoperative radiotherapy in non-small cell lung cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2014;113(3):374–8. PubMed Epub 2014/12/03. eng.

    Article  Google Scholar 

  14. Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S70–6. PubMed Pubmed Central PMCID: 3576042, Epub 2010/03/05. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kabolizadeh P, Kalash R, Huq MS, Greenberger JS, Heron DE, Beriwal S. Dosimetric definitions of total lung volumes in calculating parameters predictive for radiation-induced pneumonitis. Am J Clin Oncol. 2015;38(4):401–4. PubMed Epub 2013/09/26. eng.

    Article  PubMed  Google Scholar 

  16. Robnett TJ, Machtay M, Vines EF, McKenna MG, Algazy KM, McKenna WG. Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2000;48(1):89–94. PubMed Epub 2000/08/05. eng.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Cao J, Yuan S, Ji W, Arenberg D, Dai J, et al. Poor baseline pulmonary function may not increase the risk of radiation-induced lung toxicity. Int J Radiat Oncol Biol Phys. 2013;85(3):798–804. PubMed Pubmed Central PMCID: 3646086, Epub 2012/07/28. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Enache I, Noel G, Jeung MY, Meyer N, Oswald-Mammosser M, Pistea C, et al. Impact of 3D conformal radiotherapy on lung function of patients with lung cancer: a prospective study. Respiration. 2013;86(2):100–8. PubMed Epub 2012/11/17. eng.

    Article  PubMed  Google Scholar 

  19. Takeda A, Ohashi T, Kunieda E, Sanuki N, Enomoto T, Takeda T, et al. Comparison of clinical, tumour-related and dosimetric factors in grade 0–1, grade 2 and grade 3 radiation pneumonitis after stereotactic body radiotherapy for lung tumours. Br J Radiol. 2012;85(1013):636–42. PubMed Pubmed Central PMCID: 3479872, Epub 2012/01/19. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palma D, Lagerwaard F, Rodrigues G, Haasbeek C, Senan S. Curative treatment of Stage I non-small-cell lung cancer in patients with severe COPD: stereotactic radiotherapy outcomes and systematic review. Int J Radiat Oncol Biol Phys. 2012;82(3):1149–56. PubMed Epub 2011/06/07. eng.

    Article  PubMed  Google Scholar 

  21. Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Machuzak M, et al. Comprehensive analysis of pulmonary function Test (PFT) changes after stereotactic body radiotherapy (SBRT) for stage I lung cancer in medically inoperable patients. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2009;4(7):838–44. PubMed Epub 2009/06/03. eng.

    Google Scholar 

  22. Appelt AL, Vogelius IR, Farr KP, Khalil AA, Bentzen SM. Towards individualized dose constraints: adjusting the QUANTEC radiation pneumonitis model for clinical risk factors. Acta Oncol. 2014;53(5):605–12. PubMed Epub 2013/08/21. eng.

    Article  PubMed  Google Scholar 

  23. Vogelius IR, Bentzen SM. A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Acta Oncol. 2012;51(8):975–83. PubMed Pubmed Central PMCID: 3557496, Epub 2012/09/07. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jin H, Tucker SL, Liu HH, Wei X, Yom SS, Wang S, et al. Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2009;91(3):427–32. PubMed Epub 2008/10/22. eng.

    Article  Google Scholar 

  25. Tucker SL, Mohan R, Liengsawangwong R, Martel MK, Liao Z. Predicting pneumonitis risk: a dosimetric alternative to mean lung dose. Int J Radiat Oncol Biol Phys. 2013;85(2):522–7. PubMed Epub 2012/05/15. eng.

    Article  PubMed  Google Scholar 

  26. Huang Q, Xie F, Ouyang X. Predictive SNPs for radiation-induced damage in lung cancer patients with radiotherapy: a potential strategy to individualize treatment. Int J Biol Markers. 2015;30(1):e1–11. PubMed Epub 2014/09/30. eng.

    Article  PubMed  Google Scholar 

  27. Yom SS, Liao Z, Liu HH, Tucker SL, Hu CS, Wei X, et al. Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(1):94–102. PubMed Epub 2007/02/27. eng.

    Article  CAS  PubMed  Google Scholar 

  28. Khalil AA, Hoffmann L, Moeller DS, Farr KP, Knap MM. New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy. Acta Oncol. 2015;54(9):1343–9. PubMed Epub 2015/07/23. eng.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Hong J, Zou X, Lv W, Guo F, Hong H, et al. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis. J Radiat Res. 2015;56(6):883–8. Epub 2015/10/09.eng.

    Google Scholar 

  30. Lopez Guerra JL, Gomez DR, Zhuang Y, Levy LB, Eapen G, Liu H, et al. Changes in pulmonary function after three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, or proton beam therapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83(4):e537–43. PubMed Pubmed Central PMCID: 3923580, Epub 2012/03/17. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lopez Guerra JL, Gomez D, Zhuang Y, Levy LB, Eapen G, Liu H, et al. Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83(5):1573–9. PubMed Pubmed Central PMCID: 3931002, Epub 2012/07/10. eng.

    Article  PubMed  Google Scholar 

  32. Zarza V, Couraud S, Hassouni A, Prevost C, Souquet PJ, Letanche G, et al. Pulmonary diffusion test to NO and CO time course during thoracic radiotherapy for lung cancer: the CONORT prospective study protocol. Cancer Radiother. 2014;18(5–6):420–4. PubMed Epub 2014/09/11. Evolution de la double diffusion au CO et au NO au cours de la radiotherapie pulmonaire pour cancer bronchique : presentation du protocole de l’etude prospective Conort. fre.

    Article  CAS  PubMed  Google Scholar 

  33. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(13):2181–90. PubMed Epub 2010/03/31. eng.

    Article  CAS  Google Scholar 

  34. Curran Jr WJ, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103(19):1452–60. PubMed Pubmed Central PMCID: 3186782, Epub 2011/09/10. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):444–50. PubMed Pubmed Central PMCID: 3448004, Epub 2012/06/12. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Semrau S, Klautke G, Fietkau R. Baseline cardiopulmonary function as an independent prognostic factor for survival of inoperable non-small-cell lung cancer after concurrent chemoradiotherapy: a single-center analysis of 161 cases. Int J Radiat Oncol Biol Phys. 2011;79(1):96–104. PubMed Epub 2010/03/31. eng.

    Article  PubMed  Google Scholar 

  37. Castillo R, Pham N, Ansari S, Meshkov D, Castillo S, Li M, et al. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat Oncol. 2014;9:74. PubMed Pubmed Central PMCID: 3995607, Epub 2014/03/15. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hodge CW, Tome WA, Fain SB, Bentzen SM, Mehta MP. On the use of hyperpolarized helium MRI for conformal avoidance lung radiotherapy. Med Dosim. 2010;35(4):297–303. PubMed Pubmed Central PMCID: 2975877, Epub 2009/12/01. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ireland RH, Din OS, Swinscoe JA, Woodhouse N, van Beek EJ, Wild JM, et al. Detection of radiation-induced lung injury in non-small cell lung cancer patients using hyperpolarized helium-3 magnetic resonance imaging. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;97(2):244–8. PubMed Epub 2010/08/21. eng.

    Article  Google Scholar 

  40. Shioyama Y, Jang SY, Liu HH, Guerrero T, Wang X, Gayed IW, et al. Preserving functional lung using perfusion imaging and intensity-modulated radiation therapy for advanced-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;68(5):1349–58. PubMed Epub 2007/04/21. eng.

    Article  PubMed  Google Scholar 

  41. Vinogradskiy YY, Castillo R, Castillo E, Chandler A, Martel MK, Guerrero T. Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy. Med Phys. 2012;39(1):289–98. PubMed Epub 2012/01/10. eng.

    Article  PubMed  Google Scholar 

  42. Hoover DA, Capaldi DP, Sheikh K, Palma DA, Rodrigues GB, Dar AR, et al. Functional lung avoidance for individualized radiotherapy (FLAIR): study protocol for a randomized, double-blind clinical trial. BMC Cancer. 2014;14:934. PubMed Pubmed Central PMCID: 4364501, Epub 2014/12/17. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yamamoto T, Kabus S, von Berg J, Lorenz C, Keall PJ. Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(1):279–88. PubMed Epub 2010/07/22. eng.

    Article  PubMed  Google Scholar 

  44. Shaverdian N, Veruttipong D, Wang J, Schaue D, Kupelian P, Lee P. Pretreatment immune parameters predict for overall survival and toxicity in early-stage non-small-cell lung cancer patients treated with stereotactic body radiation therapy. Clin Lung Cancer. 2015. pii: [Epub ahead of print]:S1525-7304(15)00187-4.

    Google Scholar 

  45. Selek U, Bolukbasi Y, Welsh JW, Topkan E. Intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy strategies for locally advanced Non-small-cell lung cancer. Balkan Med J. 2014;31(4):286–94. PubMed Pubmed Central PMCID: 4318398, Epub 2015/02/11. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miller KL, Shafman TD, Marks LB. A practical approach to pulmonary risk assessment in the radiotherapy of lung cancer. Semin Radiat Oncol. 2004;14(4):298–307. PubMed Epub 2004/11/24. eng.

    Article  PubMed  Google Scholar 

  47. Chance WW, Rice DC, Allen PK, Tsao AS, Fontanilla HP, Liao Z, et al. Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication for malignant pleural mesothelioma: toxicity, patterns of failure, and a matched survival analysis. Int J Radiat Oncol Biol Phys. 2015;91(1):149–56. PubMed Epub 2014/12/03. eng.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Selek MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sezen, D., Bolukbasi, Y., Topkan, E., Selek, U. (2016). Selection Criteria for Definitive Treatment Approach in Thoracic Malignancies: Radiation Oncology Perspective. In: Ozyigit, G., Selek, U., Topkan, E. (eds) Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-28761-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28761-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28759-1

  • Online ISBN: 978-3-319-28761-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics