Skip to main content

Self/Not-Self?

  • Chapter
  • First Online:
Evolutionary Bioinformatics
  • 1717 Accesses

Abstract

The full understanding of the genome of a biological species requires an understanding of the genomes of the species with which it has coevolved, which include pathogenic species. Members of a pathogenic species that enter the bodies of members of a host species must be recognized as “not-self” so activating host immunological defenses. However, the capacity of its genomic information channel being limited, a host whose defenses are poised to attack “near-self” versions of not-self (a narrow repertoire), rather than not-self per se (a repertoire formidable in range), should be at a selective advantage. It is likely that immune systems of multicellular organisms are adaptations of those of unicellular organisms, which had already developed the capacity for self/not-self discrimination. From this perspective we can comprehend phenomena such as “junk” DNA, genetic polymorphism and the ubiquity of repetitive elements. That which is evolutionarily conserved is often functional, but that which is functional is not necessarily conserved. Variation itself may be functional. The “hidden transcriptome,” revealed by run-on transcription of genes or repetitive elements constitutes a diverse repertoire of inherited RNA ‘immune receptors’ with the potential to form double-stranded RNA with viral RNA ‘antigens,’ so triggering intracellular alarms. Both genic and non-genic DNA would have been screened over evolutionary time (by selection of individuals in which favorable mutations had been collected together by recombination) to decrease the probability of two complementary “self” transcripts interacting to form dsRNA segments above a critical length (about two helical turns). Thus, many RNAs are purine-loaded. The CRISPR system provides an analogous RNA immune receptor defence in microorganisms. Here numerical differences in CHI sequences and replication forks may facilitate self/not-self discrimination.

Thrice is he armed that hath his quarrel just,

But four times he who got his blow in fust.

Josh Billings, His Sayings (1866) [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw HW (1866) Josh Billings, His Sayings. Carleton, New York

    Google Scholar 

  2. Butler S (1965) Earnest Pontifex, or The Way of All Flesh. Howard DF (ed) Methuan, London, p. 159 [The quoted paragraph was removed from the original 1903 version.]

    Google Scholar 

  3. Mira A (1998) Why is meiosis arrested? Journal of Theoretical Biology 194:275–287

    Article  CAS  PubMed  Google Scholar 

  4. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL (2004) Germ line stem cells and follicular renewal in the post-natal mammalian ovary. Nature 428:145–150

    Article  CAS  PubMed  Google Scholar 

  5. Granovetter M (1983) The strength of weak ties. A network theory revisited. Sociological Theory 1:201–233

    Article  Google Scholar 

  6. Pancer Z, Amemiya CT, Ehrhardt GRA, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S-M, Adema CM, Kepler TB, Loker ES (2004) Diversification of Ig superfamily genes in an invertebrate. Science 305:251–254

    Article  CAS  PubMed  Google Scholar 

  8. Brücke E (1861) Die Elementarorganismen. Sitzungsberichte der Akademie der Wissenschaften Wein, Mathematische-wissenschaftliche Classe 44:381–406

    Google Scholar 

  9. Forsdyke DR, Madill CA, Smith SD (2002) Immunity as a function of the unicellular state: implications of emerging genomic data. Trends in Immunology 23:575–579

    Article  CAS  PubMed  Google Scholar 

  10. Shadrin AA and Parkhomchuk DV (2014) Drake’s rule as a consequence of approaching channel capacity. Naturwissenschaften 101:939–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Battail G (2014) Channel capacity and channel coding. In: Information and Life. Springer, Dordrecht, pp. 93–131 [Essentially the same message as in the present book, but from the perspective of an information scientist.]

    Google Scholar 

  12. Nóbrega MA, Zhu Y, Plajzer-Frick I, Afzal V, Rubin EM (2004) Megabase deletions of gene deserts result in viable mice. Nature 431:988–993

    Article  PubMed  Google Scholar 

  13. Palazzo AF, Gregory TR (2014) The case for junk DNA. PLOS Genetics 10:e1004351

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ohno S (1972) So much ‘junk’ DNA in our genome. Brookhaven Symposium on Biology 23:366–370

    CAS  Google Scholar 

  15. Plant KE, Routledge SJ, Proudfoot NJ (2001) Intergenic transcription in the human ß-globin gene cluster. Molecular & Cellular Biology 21:6507–6514

    Article  CAS  Google Scholar 

  16. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  CAS  PubMed  Google Scholar 

  17. Johnson JM, Edwards S, Shoemaker D, Schadt EE (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends in Genetics 21:93–102

    Article  CAS  PubMed  Google Scholar 

  18. Darwin C (1871) Descent of Man, and Selection in Relation to Sex. Appleton, New York, pp 156–157

    Book  Google Scholar 

  19. Faulkner GJ, et al. (2009) The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics 41:563–571

    Article  CAS  PubMed  Google Scholar 

  20. Ferguson BJ, Cooke A, Peterson P, Rich T (2008) Death in the AIRE. Trends in Immunology 29:306–312

    Article  CAS  PubMed  Google Scholar 

  21. Nishikawa Y, Hirota F, Yano M, Kitajima H, Miyazaki J, Kawamoto H, Mouri Y, Matsumoto M (2010) Biphasic Aire expression in early embryos and in thymic medullary epithelial cells before end-stage terminal differentiation. Journal of Experimental Medicine 207:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cristillo AD, Mortimer JR, Barrette IH, Lillicrap TP, Forsdyke DR (2001) Double-stranded RNA as a not-self alarm signal: to evade, most viruses purine-load their RNAs, but some (HTLV-1, EBV) pyrimidine-load. Journal of Theoretical Biology 208:475–491

    Article  CAS  PubMed  Google Scholar 

  23. Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436:1044–1047

    Article  CAS  PubMed  Google Scholar 

  24. Guglielmi KM, McDonald SM, Patton JT (2010) Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. Journal of Biological Chemistry 285:18123–18128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lauffer MA (1975) Entropy-driven Processes in Biology. Springer-Verlag, New York

    Book  Google Scholar 

  26. Evans SS, Repasky EA, Fisher DT (2014) Fever and the thermal regulation of immunity: the immune system feels the heat. Nature Reviews Immunology 15:335–349

    Article  Google Scholar 

  27. Tellam JT, Lekieffre L, Zhong J, Lynn DJ, Khanna R (2012) Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLOS Pathogens 8:e1003112 [The reciprocal experiment is to drastically change the protein while hardly changing the mRNA. This can be achieved by adding or subtracting one base (so changing the reading frame; RF), an experiment performed both by ‘Nature,’ and by human experimenters. If no stop codons are generated by the frame shift, then it is an “open reading frame” (ORF). See: (Kwun HJ, Silva SR da, Shah IM, Blake N, Moore PS & Chang Y (2007) Kaposi sarcoma-associated herpes virus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. Journal of Virology 81:8225–8235; Zaldumbide A, Ossevoort M, Wiertz EJHJ, Hoeben RC (2007) In cis inhibition of antigen processing by the latency-associated nuclear antigen 1 of Kaposi sarcoma Herpes virus. Molecular Immunology 44:1352–1360).]

    Google Scholar 

  28. Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T et al. (2014) G-quadruplexes regulate EBV-encoded nuclear antigen 1 mRNA translation. Nature Chemical Biology 10:358–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larocca D, Chao LA, Seto MH, Brunck TK (1989) Human T-cell leukaemia virus minus strand transcription in infected T-cells. Biochemical and Biophysical Research Communications 163:1006–1013

    Article  CAS  PubMed  Google Scholar 

  30. Cook LB, Elemans M, Rowan AG, Asquith B. (2013) HTLV-1: Persistence and pathogenesis. Virology 435:131–140

    Article  CAS  PubMed  Google Scholar 

  31. Forsdyke DR (2014) Implications of HIV RNA structure for recombination, speciation, and the neutralism-selectionism controversy. Microbes & Infection 16: 96–103

    Article  CAS  Google Scholar 

  32. Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    Article  CAS  PubMed  Google Scholar 

  34. Barak M, Levanon EY, Eisenberg E, Paz N, Rechavi G, Church GM, Mehr R. (2009) Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Research 37:6905–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ota T, et al. (2004) Complete sequencing and characterization of 21243 full-length human cDNAs. Nature Genetics 36:40–45

    Article  PubMed  Google Scholar 

  36. Garvey JS, Cambell DH (1966) Autoradiographic investigation of tissues after primary and multiple antigenic stimulation of rabbits. Nature 209:1201–1202

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Buckwalter MR, Basu S, Garg M, Chang J, Srivastava PK (2012) Dendritic cells sequester antigenic epitopes for prolonged periods in the absence of antigen-encoding genetic information. Proceedings of the National Academy of Sciences, USA 109:17543–17548

    Article  CAS  Google Scholar 

  38. Zabolotneva A, Tkachev V, Filatov F, Buzdin A (2010) How many small interfering RNAs may be encoded by the mammalian genomes? Biology Direct 5:62

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Molecular Cell 54:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakata A, Amemura M, Makino K (1989) An unusual nucleotide arrangement with repeated sequences in the Escherichia coli K12 chromosome. Journal of Bacteriology 171:3553–3556

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fineran PC, Gerritzen MJH, Suárez-Diez M, Künne T, Boekhorst J, Hijum SAFT van, Staals RHJ, Brouns SJJ (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences, USA 111:E1629–E1638

    Google Scholar 

  42. Seed DS, Lazinski DW, Calderwood SB, Camilli A (2014) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491

    Article  Google Scholar 

  43. Flegel TW (2009) Hypothesis for hereditable, antiviral immunity in crustaceans and insects. Biology Direct 4:32

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bertsch C, Beuve M, Dolja VV, Wirth M, Pelsy F, Herrbach E, Lemaire O (2009) Retention of virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance. Biology Direct 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tanguy M, Miska EA (2013) Antiviral RNA interference in animals: piecing together the evidence. Nature Structural & Molecular Biology 20:1239–1241

    Article  CAS  Google Scholar 

  46. Rechavi O (2014) Guest list or black list: heritable small RNAs as immunogenic memories. Trends in Cell Biology 24:212–220

    Article  CAS  PubMed  Google Scholar 

  47. Parrish NF, et al. (2015) piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. RNA 21:1691–1703

    Article  CAS  PubMed  Google Scholar 

  48. Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lao PJ, Forsdyke DR (2000) Crossover hot-spot instigator (CHI) sequences in Escherichia coli occupy distinct recombination/transcription islands. Gene 243:47–57

    Article  CAS  PubMed  Google Scholar 

  50. Charpentier E, Marraffini LA (2014) Harnessing CRISPR-Cas9 immunity for genetic engineering. Current Opinion in Microbiology 19:114–119

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Forsdyke, D.R. (2016). Self/Not-Self?. In: Evolutionary Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-28755-3_15

Download citation

Publish with us

Policies and ethics