Skip to main content

Simultaneous Statistical Inference in Dynamic Factor Models

  • Conference paper
  • First Online:
Time Series Analysis and Forecasting

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Based on the theory of multiple statistical hypotheses testing, we elaborate likelihood-based simultaneous statistical inference methods in dynamic factor models (DFMs). To this end, we work up and extend the methodology of Geweke and Singleton (Int Econ Rev 22:37–54, 1981) by proving a multivariate central limit theorem for empirical Fourier transforms of the observable time series. In an asymptotic regime with observation horizon tending to infinity, we employ structural properties of multivariate chi-square distributions in order to construct asymptotic critical regions for a vector of Wald statistics in DFMs, assuming that the model is identified and model restrictions are testable. A model-based bootstrap procedure is proposed for approximating the joint distribution of such a vector for finite sample sizes. Examples of important multiple test problems in DFMs demonstrate the relevance of the proposed methods for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York, London, Sydney, Toronto (1968)

    MATH  Google Scholar 

  4. Blanchard, G., Dickhaus, T., Roquain, E., Villers, F.: On least favorable configurations for step-up-down tests. Stat. Sin. 24(1), 1–23 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Breitung, J., Eickmeier, S.: Dynamic factor models. Discussion Paper Series 1: Economic Studies 38/2005. Deutsche Bundesbank (2005)

    Google Scholar 

  6. Chiba, M.: Likelihood-based specification tests for dynamic factor models. J. Jpn. Stat. Soc. 43(2), 91–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dickhaus, T.: Simultaneous statistical inference in dynamic factor models. SFB 649 Discussion Paper 2012-033, Sonderforschungsbereich 649, Humboldt Universität zu Berlin, Germany (2012). Available at http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-033.pdf

  8. Dickhaus, T.: Simultaneous Statistical Inference with Applications in the Life Sciences. Springer, Berlin, Heidelberg (2014)

    Book  MATH  Google Scholar 

  9. Dickhaus, T., Royen, T.: A survey on multivariate chi-square distributions and their applications in testing multiple hypotheses. Statistics 49(2), 427–454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dickhaus, T., Stange, J.: Multiple point hypothesis test problems and effective numbers of tests for control of the family-wise error rate. Calcutta Stat. Assoc. Bull. 65(257–260), 123–144 (2013)

    Article  MathSciNet  Google Scholar 

  11. Farcomeni, A.: Generalized augmentation to control false discovery exceedance in multiple testing. Scand. J. Stat. 36(3), 501–517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finner, H.: Testing Multiple Hypotheses: General Theory, Specific Problems, and Relationships to Other Multiple Decision Procedures. Habilitationsschrift. Fachbereich IV, Universität Trier, Germany (1994)

    Google Scholar 

  13. Finner, H., Dickhaus, T., Roters, M.: Dependency and false discovery rate: asymptotics. Ann. Stat. 35(4), 1432–1455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Finner, H., Dickhaus, T., Roters, M.: On the false discovery rate and an asymptotically optimal rejection curve. Ann. Stat. 37(2), 596–618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finner, H., Gontscharuk, V., Dickhaus, T.: False discovery rate control of step-up-down tests with special emphasis on the asymptotically optimal rejection curve. Scand. J. Stat. 39(2), 382–397 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiorentini, G., Sentana, E.: Dynamic specification tests for dynamic factor models. CEMFI Working Paper No. 1306, Center for Monetary and Financial Studies (CEMFI), Madrid (2013)

    Google Scholar 

  17. Forni, M., Hallin, M., Lippi, M., Reichlin, L.: The generalized dynamic-factor model: identification and estimation. Rev. Econ. Stat. 82(4), 540–554 (2000)

    Article  MATH  Google Scholar 

  18. Forni, M., Hallin, M., Lippi, M., Reichlin, L.: Opening the black box: structural factor models with large cross sections. Econ. Theory 25, 1319–1347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geweke, J.F., Singleton, K.J.: Maximum likelihood “confirmatory” factor analysis of economic time series. Int. Econ. Rev. 22, 37–54 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goodman, N.: Statistical analysis based on a certain multivariate complex Gaussian distribution. An introduction. Ann. Math. Stat. 34, 152–177 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hallin, M., Lippi, M.: Factor models in high-dimensional time series - a time-domain approach. Stoch. Process. Appl. 123(7), 2678–2695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hannan, E.J.: Multiple Time Series. Wiley, New York, London, Sydney (1970)

    Book  MATH  Google Scholar 

  23. Hannan, E.J.: Central limit theorems for time series regression. Z. Wahrscheinlichkeitstheor. Verw. Geb. 26, 157–170 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. Theory Appl. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Hommel, G.: A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75(2), 383–386 (1988)

    Article  MATH  Google Scholar 

  26. Hothorn, T., Bretz, F., Westfall, P.: Simultaneous inference in general parametric models. Biom. J. 50(3), 346–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jensen, D.R.: A generalization of the multivariate Rayleigh distribution. Sankhyā, Ser. A 32(2), 193–208 (1970)

    Google Scholar 

  28. Jöreskog, K.G.: A general approach to confirmatory maximum likelihood factor analysis. Psychometrika 34(2), 183–202 (1969)

    Article  Google Scholar 

  29. Karlin, S., Rinott, Y.: Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivar. Anal. 10, 467–498 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Katayama, N.: Portmanteau likelihood ratio tests for model selection. Discussion Paper Series 2008–1. Faculty of Economics, Kyushu University (2008)

    Google Scholar 

  31. Konietschke, F., Bathke, A.C., Harrar, S.W., Pauly, M.: Parametric and nonparametric bootstrap methods for general MANOVA. J. Multivar. Anal. 140, 291–301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer Texts in Statistics, 3rd edn. Springer, New York (2005)

    Google Scholar 

  33. Marcus, R., Peritz, E., Gabriel, K.: On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63, 655–660 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maurer, W., Mellein, B.: On new multiple tests based on independent p-values and the assessment of their power. In: Bauer, P., Hommel, G., Sonnemann, E. (eds.) Multiple Hypothesenprüfung - Multiple Hypotheses Testing. Symposium Gerolstein 1987, pp. 48–66. Springer, Berlin (1988). Medizinische Informatik und Statistik 70

    Google Scholar 

  35. Nesselroade, J.R., McArdle, J.J., Aggen, S.H., Meyers, J.M.: Dynamic factor analysis models for representing process in multivariate time-series. In: Moskowitz, D.S., Hershberger, S.L. (eds.) Modeling Intraindividual Variability with Repeated Measures Data: Methods and Applications, Chap. 9 Lawrence Erlbaum Associates, New Jersey (2009)

    Google Scholar 

  36. Park, B.U., Mammen, E., Härdle, W., Borak, S.: Time series modelling with semiparametric factor dynamics. J. Am. Stat. Assoc. 104(485), 284–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pauly, M., Brunner, E., Konietschke, F.: Asymptotic permutation tests in general factorial designs. J. R. Stat. Soc., Ser. B. 77(2), 461–473 (2015)

    Google Scholar 

  38. Peligrad, M., Wu, W.B.: Central limit theorem for Fourier transforms of stationary processes. Ann. Probab. 38(5), 2009–2022 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Peña, D., Box, G.E.: Identifying a simplifying structure in time series. J. Am. Stat. Assoc. 82, 836–843 (1987)

    MathSciNet  MATH  Google Scholar 

  40. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York, London, Sydney (1971)

    MATH  Google Scholar 

  41. Robinson, P.: Automatic frequency domain inference on semiparametric and nonparametric models. Econometrica 59(5), 1329–1363 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Romano, J.P., Wolf, M.: Exact and approximate stepdown methods for multiple hypothesis testing. J. Am. Stat. Assoc. 100(469), 94–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Romano, J.P., Wolf, M.: Stepwise multiple testing as formalized data snooping. Econometrica 73(4), 1237–1282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Romano, J.P., Shaikh, A.M., Wolf, M.: Control of the false discovery rate under dependence using the bootstrap and subsampling. TEST 17(3), 417–442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sarkar, S.K.: Some probability inequalities for ordered MTP2 random variables: a proof of the Simes conjecture. Ann. Stat. 26(2), 494–504 (1998)

    Article  MATH  Google Scholar 

  46. Sarkar, S.K.: Some results on false discovery rate in stepwise multiple testing procedures. Ann. Stat. 30(1), 239–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sarkar, S.K., Chang, C.K.: The Simes method for multiple hypothesis testing with positively dependent test statistics. J. Am. Stat. Assoc. 92(440), 1601–1608 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simes, R.: An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–754 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sonnemann, E.: General solutions to multiple testing problems. Translation of “Sonnemann, E. (1982). Allgemeine Lösungen multipler Testprobleme. EDV in Medizin und Biologie 13(4), 120–128”. Biom. J. 50, 641–656 (2008)

    Google Scholar 

  50. Tamhane, A.C., Liu, W., Dunnett, C.W.: A generalized step-up-down multiple test procedure. Can. J. Stat. 26(2), 353–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Timm, N.H.: Applied Multivariate Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  52. Troendle, J.F.: A stepwise resampling method of multiple hypothesis testing. J. Am. Stat. Assoc. 90(429), 370–378 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Troendle, J.F.: Stepwise normal theory multiple test procedures controlling the false discovery rate. J. Stat. Plann. Inference 84(1–2), 139–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. van Bömmel, A., Song, S., Majer, P., Mohr, P.N.C., Heekeren, H.R., Härdle, W.K.: Risk patterns and correlated brain activities. Multidimensional statistical analysis of fMRI data in economic decision making study. Psychometrika 79(3), 489–514 (2014)

    MATH  Google Scholar 

  55. Westfall, P.H., Young, S.S.: Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Wiley, New York (1993)

    MATH  Google Scholar 

  56. Yekutieli, D., Benjamini, Y.: Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plann. Inference 82(1–2), 171–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Manfred Deistler for valuable comments regarding Problem 1. Special thanks are due to the organizers of the International work-conference on Time Series (ITISE 2015) for the successful meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Dickhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dickhaus, T., Pauly, M. (2016). Simultaneous Statistical Inference in Dynamic Factor Models. In: Rojas, I., Pomares, H. (eds) Time Series Analysis and Forecasting. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-28725-6_3

Download citation

Publish with us

Policies and ethics