Skip to main content

Parameterisation of Multi-directional Diffusion Weighted Magnetic Resonance Images of the Heart

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2015)

Abstract

This study presents a novel method for building parametric representations of myocardial microstructure of the left ventricle from multi-directional diffusion weighted magnetic resonance images (DWI). The direction of maximal diffusion is directly estimated from the DWI signal intensities using finite element field fitting. This framework avoids the need to compute diffusion tensors, which introduces errors due to least squares fitting that are generally neglected when building microstructural models of the heart from DWI. Nodal parameters describing cardiac myocyte orientations throughout a finite element model of the left ventricle were fitted to a series of raw diffusion signals using non-linear least squares optimisation to determine the direction of maximum diffusion. An ex vivo DWI data set from a Wystar-Kyoto rat was processed using the proposed method. The fitted myocyte orientations were compared against conventional diffusion tensor/eigenvector analysis and the degree of correlation was measured using a normalised dot product (nDP). Good agreement (nDP = 0.979) between the new method and the traditional tensor analysis approach was observed for regions of high fractional anisotropy (FA). In regions of low FA, the errors were much more variable, but the proposed method maintains a smoothly varying myocyte angle distribution as is generally used in tissue and organ scale heart models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fitted diffusion tensor was projected back onto the original set of j gradient directions to get a set of estimated signal strengths (\(S_{e(j)}\)). The estimated signal strengths, the measured signal strengths (\(S_{m(j)}\)), and the mean of the measured signal strengths (\(\bar{S}_m\)) were then used to calculate the coefficient of determination:

    $$\begin{aligned} R^2=1- \frac{\sum _j(S_{m(j)}-S_{e(j)})^2}{\sum _j(S_{m(j)}-\bar{S}_{m})^2}. \end{aligned}$$
    (1)

    .

  2. 2.

    The MathWorks, Inc., Natick, Massachusetts, United States.

  3. 3.

    \(\gamma \) represents the gyromagnetic ratio of protons, \(\delta \) and G the duration and magnitude of application of the motion probing gradient along direction g \(_{(j)}\), \(D_{(j)}\) the apparent diffusivity in the same direction, and \(\varDelta \) the time difference between the centres of a pair of gradient pulses.

  4. 4.

    least squares quasi Newton function, OPT++ optimisation library, http://software.sandia.gov/opt++.

  5. 5.

    OpenCMISS-Cmgui application, www.opencmiss.org.

References

  1. Vadakkumpadan, F., Gurev, V., Constantino, J., Arevalo, H., Trayanova, N.: Modeling of whole-heart electrophysiology and mechanics: toward patient-specific simulations. In: Kerckhoff, R.C.P. (ed.) Patient-Specific Modeling of the Cardiovascular System, pp. 145–165. Springer, New York (2010)

    Chapter  Google Scholar 

  2. Sermesant, M., Chabiniok, R., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)

    Article  Google Scholar 

  3. Keldermann, R.H., Nash, M.P., Gelderblom, H., Wang, V.Y., Panfilov, A.V.: Electromechanical wavebreak in a model of the human left ventricle. Am. J. Physiol. Heart Circulatory Physiol. 299(1), H134–H143 (2010)

    Article  Google Scholar 

  4. Krishnamurthy, A., Villongco, C.T., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013)

    Article  Google Scholar 

  5. Walker, J.C., Ratcliffe, M.B., Zhang, P., Wallace, A.W., Hsu, E.W., Saloner, D.A., Guccione, J.M.: Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J. Thoracic Cardiovasc. Surg. 135(5), 1094–1102 (2008)

    Article  Google Scholar 

  6. Wang, V.Y., Lam, H., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13(5), 773–784 (2009)

    Article  Google Scholar 

  7. Xi, J., Lamata, P., et al.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)

    Article  Google Scholar 

  8. Niederer, S.A., Smith, N.P.: The role of the frank-starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis. PLoS Comput. Biol. 5(4), e1000371 (2009)

    Article  Google Scholar 

  9. Wang, V.Y., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Myocardial contractility and regional work throughout the cardiac cycle using FEM and MRI. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 149–159. Springer, Heidelberg (2012)

    Google Scholar 

  10. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Series B 103(3), 247–254 (1994)

    Article  Google Scholar 

  11. Lekadir, K., Hoogendoorn, C., Pereanez, M., Albà, X., Pashaei, A., Frangi, A.F.: Statistical personalization of ventricular fiber orientation using shape predictors. IEEE Trans. Med. Imaging 33(4), 882–890 (2014)

    Article  Google Scholar 

  12. Toussaint, N., Stoeck, C.T., Schaeffter, T., Kozerke, S., Sermesant, M., Batchelor, P.G.: In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Med. Image Anal. 17(8), 1243–1255 (2013)

    Article  Google Scholar 

  13. Jones, D.K., Pierpaoli, C.: Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magn. Reson. Med. 53(5), 1143–1149 (2005)

    Article  Google Scholar 

  14. Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)

    Article  Google Scholar 

  15. Nagler, A., Bertoglio, C., Stoeck, C.T., Kozerske, S., Wall, W.A.: Cardiac fibres estimation from arbitrarily spaced difusion tensor MRI. In: Lecture Notes in Computer Science. vol. 9126, pp. 198–206. Springer, Heidelberg (2015)

    Google Scholar 

  16. Hsu, E., Muzikant, A., Matulevicius, S., Penland, R., Henriquez, C.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. Heart Circulatory Physiol. 274(5), H1627–H1634 (1998)

    Google Scholar 

  17. Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. Heart Circulatory Physiol. 275(6), H2308–H2318 (1998)

    Google Scholar 

  18. Freytag, B., Wang, V.Y., Christie, G.R., Wilson, A.J., Sands, G.B., LeGrice, I.J., Young, A.A., Nash, M.P.: Field-based parameterisation of cardiac muscle structure from diffusion tensors. FIMH 2015. LNCS, vol. 9126, pp. 146–154. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  19. LeGrice, I.J., Hunter, P.J., Smaill, B.: Laminar structure of the heart: a mathematical model. Am. J. Physiol. Heart Circulatory Physiol. 272, H2466–H2476 (1997)

    Google Scholar 

  20. Christie, G., Bullivant, D., Blackett, S., Hunter, P.J.: Modelling and visualising the heart. Comput. Vis. Sci. 4(4), 227–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Mag. Reson. Series B 111, 209–219 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Freytag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Freytag, B. et al. (2016). Parameterisation of Multi-directional Diffusion Weighted Magnetic Resonance Images of the Heart. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28712-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28711-9

  • Online ISBN: 978-3-319-28712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics