Skip to main content

Prediction of Infarct Localization from Myocardial Deformation

  • Conference paper
  • First Online:
Book cover Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9534))

Included in the following conference series:

Abstract

We propose a novel framework to predict the location of a myocardial infarct from local wall deformation data. Non-linear dimensionality reduction is used to estimate the Euclidean space of coordinates encoding deformation patterns. The infarct location of a new subject is inferred by two consecutive interpolations, formulated as multiscale kernel regressions. They consist in (i) finding the low-dimensional coordinates associated to the measured deformation pattern, and (ii) estimating the possible infarct location associated to these coordinates. These concepts were tested on a database of 500 synthetic cases generated from a realistic electromechanical model of the two ventricles. The database consisted of infarcts of random extent, shape, and location overlapping the whole left-anterior-descending coronary territory. We demonstrate that our method is accurate and significantly overcomes the limitations of the clinically-used thresholding of the deformation patterns (average area under the ROC curve of 0.992\(\pm \)0.011 vs. 0.812\(\pm \)0.124, p\(<\)0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www-sop.inria.fr/asclepios/docs/TestCasesThresh.zip.

References

  1. Alessandrini, M., De Craene, M., Bernard, O., et al.: A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: methodology and open-access database. IEEE Trans. Med. Imaging (in press, 2015)

    Google Scholar 

  2. Duchateau, N., De Craene, M., Piella, G., et al.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16, 1532–1549 (2012)

    Article  Google Scholar 

  3. Duchateau, N., De Craene, M., Sitges, M., Caselles, V.: Adaptation of multiscale function extension to inexact matching: application to the mapping of individuals to a learnt manifold. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 578–586. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Gerber, S., Tasdizen, T., Fletcher, P., et al.: Manifold modeling for brain population analysis. Med. Image Anal. 14, 643–653 (2010)

    Article  Google Scholar 

  5. Lekadir, K., Hoogendoorn, C., Pereanez, M., et al.: Statistical personalization of ventricular fiber orientation using shape predictors. IEEE Trans. Med. Imaging 33, 882–890 (2014)

    Article  Google Scholar 

  6. Marchesseau, S., Delingette, H., Sermesant, M., et al.: Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes. Med. Image Anal. 17, 816–829 (2013)

    Article  Google Scholar 

  7. Marchesseau, S., Delingette, H., Sermesant, M., Sorine, M., Rhode, K., Duckett, S., Rinaldi, C., Razavi, R., Ayache, N.: Preliminary specificity study of the Bestel-Clement-Sorine electromechanical model of the heart using parameter calibration from medical images. J. Mech. Behav. Biomed. Mater. 20, 259–271 (2013)

    Article  Google Scholar 

  8. Ortiz-Perez, J., Rodriguez, J., Meyers, S., et al.: Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc. Imaging 1, 282–292 (2008)

    Article  Google Scholar 

  9. Sjøli, B., Ørn, S., Grenne, B., et al.: Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc. Imaging 2, 24–33 (2009)

    Article  Google Scholar 

  10. Tenenbaum, J., De Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  11. Yan, S., Xu, D., Zhang, B., et al.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)

    Article  Google Scholar 

  12. Zhang, X., Cowan, B., Bluemke, D., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS One 9, e110243 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the European Union 7th Framework Programme (VP2HF: FP7-2013-611823) and the European Research Council (MedYMA: ERC-AdG-2011-291080). They also thank their colleagues R. Mollero and S. Giffard-Roisin for their support on practical aspects of the SOFA simulations, and their collaborators M. De Craene (Philips Suresnes, France) and E. Saloux (CHU Caen, France) for discussions on these concepts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Duchateau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Duchateau, N., Sermesant, M. (2016). Prediction of Infarct Localization from Myocardial Deformation. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28712-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28711-9

  • Online ISBN: 978-3-319-28712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics