Skip to main content

High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

As nanotechnology has advanced, deformable nanoscale materials with superb electrical, chemical, and optical properties have made possible the development of high-performance multifunctional electronic devices with flexible and stretchable form factors. Deformability in electronics is achieved mainly by replacing rigid bulk materials (e.g., a silicon wafer) with various promising nanomaterials (e.g., silicon/oxide nanomembranes, carbon nanotubes, graphene, and metal nanoparticles/nanowires). These ultrathin, lightweight, and deformable electronics have attracted widespread interest and offer new opportunities in personalized healthcare, such as wearable bioelectronics. Their deformability, in particular, helps overcome the mechanical mismatch between the conventional bioelectronics, which are flat and rigid, and the soft, curvilinear human skin and internal organs. It resolves prevalent problems in conventional biomedical devices, such as inaccurate biosignal sensing, low signal-to-noise ratio, and user discomfort. Here, we provide an overview of recent developments in wearable bioelectronics integrated with functional nanomaterials with a focus on mobile personal healthcare technologies. The devices introduced in this chapter include wearable sensors, actuators, memory units, and nanogenerators dedicated to healthcare applications. Detailed descriptions of such integrated systems and their uses in clinical medicine are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Notes

  1. T. Someya, T. Sekitani, S. Iba et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Nat. Acad. Sci. 101, 9966–9970 (2004)

    Article  Google Scholar 

  2. M. Kaltenbrunner, T. Sekitani, J. Reeder et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)

    Article  Google Scholar 

  3. C. Wang, D. Hwang, Z. Yu et al., User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013)

    Article  Google Scholar 

  4. C. Yeom, K. Chen, D. Kiriya et al., Large-area compliant tactile sensors using printed carbon nanotube active-matrix blackplanes. Adv. Mater. 27, 1561–1566 (2015)

    Article  Google Scholar 

  5. S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Article  Google Scholar 

  6. D.J. Lipomi, M. Vosgueritchian, B.C.-K. Tee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)

    Article  Google Scholar 

  7. B.C.-K. Tee, C. Wang, R. Allen et al., An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012)

    Article  Google Scholar 

  8. M. Ramuz, B.C.-K. Tee, J.B.-H. Tok et al., Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–3227 (2012)

    Article  Google Scholar 

  9. G. Schwartz, B.C.-K. Tee, J. Mei et al., Flexible polymer transistor with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). doi:10.1038/ncomms2832

  10. L.Y. Chen, B.C.-K. Tee, A.L. Chortos et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014). doi:10.1038/ncomms6028

    Article  Google Scholar 

  11. D.-H. Kim, N. Lu, R. Ma et al., Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  12. D.-H. Kim, N. Lu, R. Ghaffari et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011)

    Article  Google Scholar 

  13. J.-W. Jeong, W.-H. Yeo, A. Akhtar et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013)

    Article  Google Scholar 

  14. R.C. Webb, A.P. Bonifas, A. Behnaz et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013)

    Article  Google Scholar 

  15. Y.M. Song, Y. Xie, V. Malyarchuk et al., Digital cameras with designs inspired by the anthropod eye. Nature 497, 95–99 (2013)

    Article  Google Scholar 

  16. S. Xu, Y. Zhang, L. Jia et al, Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)

    Google Scholar 

  17. Y. Hattori, L. Falgout, W. Lee et al., Multifunctional skin-like electronics for quantitative clinical monitoring of cutaneous wound healing. Adv. Health. Mater. 3, 1597–1607 (2014)

    Article  Google Scholar 

  18. L. Gao, Y. Zhang, V. Malyarchuk et al., Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014). doi:10.1038/ncomms5938

    Article  Google Scholar 

  19. C. Dagdeviren, Y. Su, P. Joe et al., Conformal amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). doi:10.1038/ncomms5496

    Article  Google Scholar 

  20. H.-J. Chung, M.S. Sulkin, J.-S. Kim et al., Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv. Health. Mater. 3, 59–68 (2014)

    Article  Google Scholar 

  21. J.-W. Jeong, J.G. McCall, G. Shin et al., Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 1–13 (2015)

    Article  Google Scholar 

  22. L. Xu, S.R. Gutbrod, Y. Ma et al., Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27, 1731–1737 (2015)

    Article  Google Scholar 

  23. S. Jung, J.H. Kim, J. Kim et al., Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interface. Adv. Mater. 26, 4825–4830 (2014)

    Article  Google Scholar 

  24. S.J. Kim, H.R. Cho, K.W. Cho et al., Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy. ACS Nano 9, 2677–2688 (2015)

    Article  Google Scholar 

  25. M.K. Choi, O.K. Park, C. Choi et al., Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Health. Mater. (2015). doi:10.1002/adhm.201500285

    Google Scholar 

  26. D.-H. Kim, Y. Lee, Bioelectronics: injection and unfolding. Nat. Nanotechnol. 10, 570–571 (2015)

    Article  Google Scholar 

  27. S. Choi, J. Park, W. Hyun et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015)

    Article  Google Scholar 

  28. D.-H. Kim, R. Ghaffari, N. Lu et al., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Nat. Acad. Sci. 109, 19910–19915 (2012)

    Article  Google Scholar 

  29. D.-H. Kim, S. Wang, H. Keum et al., Thin, flexible sensors and actuators as ‘instrumented’ surgical sutures for targeted wound monitoring and therapy. Small 8, 3263–3268 (2012)

    Article  Google Scholar 

  30. M. Ying, A.P. Bonifas, N. Lu et al., Silicon nanomembranes for fingertip electronics. Nanotechnology 23, 344004 (2012)

    Article  Google Scholar 

  31. T.-I. Kim, J.G. McCall, Y.H. Jung et al., Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 240, 211–216 (2013)

    Article  Google Scholar 

  32. T. Sekitani, T. Yokota, U. Zschieschang et al., Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009)

    Article  Google Scholar 

  33. S.-T. Han, Y. Zhou, Z.-X. Xu et al., Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv. Mater. 24, 3556–3561 (2012)

    Article  Google Scholar 

  34. S.-T. Han, Y. Zhou, C. Wang et al., Layer-by-layer-assembled reduced graphene oxide/gold nanoparticle hybrid double-floating-gate structure for low-voltage flexible flash memory. Adv. Mater. 25, 872–877 (2013)

    Article  Google Scholar 

  35. D. Son, J. Lee, S. Qiao et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014)

    Google Scholar 

  36. D. Son, J.H. Koo, J.-K. Song et al., Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano 9, 5585–5593 (2015)

    Article  Google Scholar 

  37. Y. Ji, B. Cho, S. Song et al., Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 22, 3071–3075 (2010)

    Article  Google Scholar 

  38. Y. Ji, D.F. Zeigler, D.S. Lee et al., Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture. Nat. Commun. 4, 2707 (2013). doi:10.1038/ncomms3707

    Article  Google Scholar 

  39. S. Kim, J.H. Son, S.H. Lee et al., Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv. Mater. 26, 7480–7487 (2014)

    Article  Google Scholar 

  40. A.A. Bessonov, M.N. Kirikova, D.I. Petukhov et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015)

    Article  Google Scholar 

  41. C. Wang, J.-C. Chien, K. Takei et al., Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12, 1527–1533 (2012)

    Article  Google Scholar 

  42. D.-M. Sun, M.Y. Timmermans, Y. Tian et al., Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 6, 156–161 (2011)

    Article  Google Scholar 

  43. D.-M. Sun, M.Y. Timmermans, A. Kaskela et al., Mouldable all-carbon integrated circuits. Nat. Commun. 4, 2302 (2013). doi:10.1038/ncomms3302

    Google Scholar 

  44. Q. Cao, H.-S. Kim, N. Pimparkar et al., Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008)

    Article  Google Scholar 

  45. D.-H. Kim, J.-H. Ahn, W.-M. Choi et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  46. T. Sekitani, U. Zschieschang, H. Klauk et al., Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010)

    Article  Google Scholar 

  47. T. Sekitani, H. Nakajima, H. Maeda et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009)

    Article  Google Scholar 

  48. M.S. White, M. Kaltenbrunner, E.D. Gtowacki et al., Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013)

    Article  Google Scholar 

  49. R.-H. Kim, D.-H. Kim, J. Xiao et al., Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010)

    Article  Google Scholar 

  50. B.H. Kim, M.S. Onses, J.B. Lim et al., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015)

    Article  Google Scholar 

  51. M.K. Choi, J. Yang, K. Kang et al., Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015). doi:10.1038/ncomms8149

    Article  Google Scholar 

  52. S. Jung, J. Lee, T. Hyeon et al., Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 26, 6329–6334 (2014)

    Article  Google Scholar 

  53. J. Yoon, S. Jo, I.S. Chun et al., GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010)

    Google Scholar 

  54. S. Xu, Y. Zhang, J. Cho et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013). doi:10.1038/ncomms2553

    Article  Google Scholar 

  55. Z. Li, G. Zhu, R. Yang et al., Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534–2537 (2010)

    Article  Google Scholar 

  56. G. Zhu, R. Yang, S. Wang et al., Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151–3155 (2010)

    Article  Google Scholar 

  57. Y. Yang, H. Zhang, Z.-H. Lin et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7, 9213–9222 (2013)

    Article  Google Scholar 

  58. K.S. Kim, Y. Zhao, H. Jang et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  59. S. Bae, H. Kim, Y. Lee et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    Article  Google Scholar 

  60. J.N. Coleman, M. Lotya, A. O’Neill et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 311, 568–571 (2011)

    Article  Google Scholar 

  61. C. Pang, G.-Y. Lee, T.-I. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat. Mater. 11, 795–801 (2012)

    Article  Google Scholar 

  62. W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013)

    Article  Google Scholar 

  63. J. Kim, M. Lee, H.J. Shim et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). doi:10.1038/ncomms6747

    Article  Google Scholar 

  64. D.-H. Kwon, K.M. Kim, J.H. Jang et al., Atomic structure of conducting nanofilaments in TiO2 resistive swiching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  Google Scholar 

  65. S.J. Song, J.Y. Seok, J.H. Yoon et al., Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM. Sci. Rep. 3, 3443 (2013). doi:10.1038/srep03443

    Google Scholar 

  66. W.-H. Yeo, Y.-S. Kim, J. Lee et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013)

    Article  Google Scholar 

  67. H.W. Lee, Y. Yoon, S. Park et al., Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2, 541 (2011). doi:10.1038/ncomms1545

    Article  Google Scholar 

  68. M.S. Arnold, A.A. Green, J.F. Hulvat et al., Sorting carbon nanotubes by electronic structure via density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)

    Article  Google Scholar 

  69. S. Park, H. Kim, M. Vosgueritchian et al., Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26, 7324–7332 (2014)

    Article  Google Scholar 

  70. M. Park, K. Do, J. Kim et al., Oxide nanomembrane hybrids with enhanced mechano- and thermos-sensitivity for semitransparent epidermal electronics. Adv. Health. Mater. 4, 992–997 (2015)

    Article  Google Scholar 

  71. S. Lim, D. Son, J. Kim et al., Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 25, 375–383 (2015)

    Article  Google Scholar 

  72. C. Zhang, W. Tang, C. Han et al., Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26, 3580–3591 (2014)

    Article  Google Scholar 

  73. J. Zhong, Y. Zhang, Q. Zhong et al., Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014)

    Article  Google Scholar 

  74. X. Pu, L. Li, H. Song et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by IBS-R006-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hyeong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Son, D., Koo, J.H., Lee, J., Kim, DH. (2016). High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics