Skip to main content

Mechanics and Designs of Stretchable Bioelectronics

  • Chapter
  • First Online:

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter reviews mechanics-guided designs that enable highly deformable forms of bioelectronics, through soft, conformal integration of hard functional components with soft elastomeric substrates. Three representative strategies, including wavy, wrinkled design, island-bridge design, and Origami/Kirigami-inspired design, are summarized, highlighting the key design concepts, unique mechanical behaviors, and analytical/computational mechanics models that guide the design optimization. Finally, some perspectives are provided on the remaining challenges and opportunities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.A. Rogers, T. Someya, Y.G. Huang, Mater. Mech. Stretchable Electron. Sci. 327, 1603–1607 (2010)

    Google Scholar 

  2. T. Sekitani, T. Someya, Stretchable large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010)

    Article  Google Scholar 

  3. D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang et al., Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  4. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)

    Article  Google Scholar 

  5. S. Xu, Y.H. Zhang, L. Jia, K.E. Mathewson, K.I. Jang, J. Kim et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)

    Article  Google Scholar 

  6. H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    Article  Google Scholar 

  7. Y.M. Song, Y.Z. Xie, V. Malyarchuk, J.L. Xiao, I. Jung, K.J. Choi et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013)

    Article  Google Scholar 

  8. S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25, 179–181 (2004)

    Article  Google Scholar 

  9. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. PNAS 101, 9966–9970 (2004)

    Article  Google Scholar 

  10. S.J. Benight, C. Wang, J.B.H. Tok, Z.A. Bao, Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013)

    Article  Google Scholar 

  11. D.H. Kim, J. Viventi, J.J. Amsden, J.L. Xiao, L. Vigeland, Y.S. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)

    Article  Google Scholar 

  12. D.H. Kim, N.S. Lu, Y.G. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37, 226–235 (2012)

    Article  Google Scholar 

  13. S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37, 207–217 (2012)

    Article  Google Scholar 

  14. C.J. Yu, C. Masarapu, J.P. Rong, B.Q. Wei, H.Q. Jiang, Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009)

    Article  Google Scholar 

  15. J.F. Zang, S. Ryu, N. Pugno, Q.M. Wang, Q. Tu, M.J. Buehler et al., Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013)

    Article  Google Scholar 

  16. K.I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y.H. Zhang, J.W. Jeong et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014)

    Article  Google Scholar 

  17. S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Article  Google Scholar 

  18. D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  Google Scholar 

  19. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  Google Scholar 

  20. J. Jones, S.P. Lacour, S. Wagner, Z.G. Suo, Stretchable wavy metal interconnects. J. Vac. Sci. Technol. A 22, 1723–1725 (2004)

    Article  Google Scholar 

  21. D.Y. Khang, J.A. Rogers, H.H. Lee, Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 19, 1526–1536 (2009)

    Article  Google Scholar 

  22. J. Song, H. Jiang, Y. Huang, J.A. Rogers, Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27, 1107–1125 (2009)

    Article  Google Scholar 

  23. J. Song, Mechanics of stretchable electronics. Curr. Opin. Solid State Mater. Sci. 19, 160–170 (2015)

    Article  Google Scholar 

  24. Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. Trans. ASME 71, 597–603 (2004)

    Article  MATH  Google Scholar 

  26. H.Q. Jiang, D.Y. Khang, J.Z. Song, Y.G. Sun, Y.G. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. PNAS 104, 15607–15612 (2007)

    Article  Google Scholar 

  27. J. Song, H. Jiang, Z.J. Liu, D.Y. Khang, Y. Huang, J.A. Rogers et al., Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45, 3107–3121 (2008)

    Article  MATH  Google Scholar 

  28. H.Y. Cheng, Y.H. Zhang, K.C. Hwang, J.A. Rogers, Y.G. Huang, Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int. J. Solids Struct. 51, 3113–3118 (2014)

    Article  Google Scholar 

  29. H.Q. Jiang, D.Y. Khang, H.Y. Fei, H. Kim, Y.G. Huang, J.L. Xiao et al., Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J. Mech. Phys. Solids 56, 2585–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. W.M. Choi, J.Z. Song, D.Y. Khang, H.Q. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “Wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007)

    Article  Google Scholar 

  31. D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J.Z. Song et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  32. R. Huang, S.H. Im, Dynamics of wrinkle growth and coarsening in stressed thin films. Phys. Rev. E 74, 026214 (2006)

    Article  Google Scholar 

  33. J. Song, H. Jiang, W.M. Choi, D.Y. Khang, Y. Huang, J.A. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)

    Article  Google Scholar 

  34. J.F. Zang, C.Y. Cao, Y.Y. Feng, J. Liu, X.H. Zhao, Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci. Rep. 4, 6492 (2014)

    Article  Google Scholar 

  35. S.P. Lacour, J. Jones, S. Wagner, T. Li, Z.G. Suo, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005)

    Article  Google Scholar 

  36. D.H. Kim, J.Z. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z.J. Liu et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 105, 18675–18680 (2008)

    Article  Google Scholar 

  37. H.C. Ko, G. Shin, S.D. Wang, M.P. Stoykovich, J.W. Lee, D.H. Kim et al., Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5, 2703–2709 (2009)

    Article  Google Scholar 

  38. J. Lee, J. Wu, J.H. Ryu, Z.J. Liu, M. Meitl, Y.W. Zhang et al., Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small 8, 1851–1856 (2012)

    Article  Google Scholar 

  39. J. Lee, J.A. Wu, M.X. Shi, J. Yoon, S.I. Park, M. Li et al., Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23, 986–991 (2011)

    Article  Google Scholar 

  40. J. Song, Y. Huang, J. Xiao, S. Wang, K.C. Hwang, H.C. Ko et al., Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105 (2009)

    Google Scholar 

  41. R. Li, M. Li, Y.W. Su, J.Z. Song, X.Q. Ni, An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 9, 8476–8482 (2013)

    Article  Google Scholar 

  42. Y. Su, J. Wu, Z. Fan, K.C. Hwang, J. Song, Y. Huang et al., Postbuckling analysis and its application to stretchable electronics. J. Mech. Phys. Solids 60, 487–508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. C. Chen, W.M. Tao, Y.W. Su, J. Wu, J.Z. Song, Lateral buckling of interconnects in a noncoplanar mesh design for stretchable electronics. J. Appl. Mech. Trans. ASME 80 (2013)

    Google Scholar 

  44. Y.H. Zhang, S. Xu, H.R. Fu, J. Lee, J. Su, K.C. Hwang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013)

    Article  Google Scholar 

  45. Y.H. Zhang, H.R. Fu, Y.W. Su, S. Xu, H.Y. Cheng, J.A. Fan et al., Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013)

    Article  Google Scholar 

  46. T. Widlund, S.X. Yang, Y.Y. Hsu, N.S. Lu, Stretchability and compliance of freestanding serpentine-shaped ribbons. Int. J. Solids Struct. 51, 4026–4037 (2014)

    Article  Google Scholar 

  47. T. Li, Z.G. Suo, S.P. Lacour, S. Wagner, Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005)

    Article  Google Scholar 

  48. M. Gonzalez, F. Axisa, M.V. BuIcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825–832 (2008)

    Article  Google Scholar 

  49. Y.H. Zhang, S.D. Wang, X.T. Li, J.A. Fan, S. Xu, Y.M. Song et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028–2037 (2014)

    Article  Google Scholar 

  50. Y.A. Huang, Y.Q. Duan, Y.J. Ding, N.B. Bu, Y.Q. Pan, N.S. Lu et al., Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Sci. Rep. 4, 5949 (2014)

    Google Scholar 

  51. Y.A. Huang, Y.Z. Wang, L. Xiao, H.M. Liu, W.T. Dong, Z.P. Yin, Microfluidic serpentine antennas with designed mechanical tunability. Lab Chip 14, 4205–4212 (2014)

    Article  Google Scholar 

  52. N.S. Lu, C. Lu, S.X. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012)

    Article  Google Scholar 

  53. Y.Q. Duan, Y.A. Huang, Z.P. Yin, N.B. Bu, W.T. Dong, Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale 6, 3289–3295 (2014)

    Article  Google Scholar 

  54. L. Gao, Y.H. Zhang, V. Malyarchuk, L. Jia, K.I. Jang, R.C. Webb et al., Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014)

    Article  Google Scholar 

  55. J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho, D. Son et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5 (2014)

    Google Scholar 

  56. L.Z. Xu, S.R. Gutbrod, Y.J. Ma, A. Petrossians, Y.H. Liu, R.C. Webb et al., Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27, 1731–+ (2015)

    Google Scholar 

  57. Y.A. Huang, W.T. Dong, T. Huang, Y.Z. Wang, L. Xiao, Y.W. Su et al., Self-similar design for stretchable wireless LC strain sensors. Sens. Actuators, A Phys. 224, 36–42 (2015)

    Article  Google Scholar 

  58. Y.W. Su, S.D. Wang, Y.A. Huang, H.W. Luan, W.T. Dong, J.A. Fan et al., Elast. Fractal Inspired Interconnects. Small 11, 367–373 (2015)

    Article  Google Scholar 

  59. Y.H. Zhang, H.R. Fu, S. Xu, J.A. Fan, K.C. Hwang, J.Q. Jiang et al., A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J. Mech. Phys. Solids 72, 115–130 (2014)

    Article  Google Scholar 

  60. J.A. Fan, W.H. Yeo, Y.W. Su, Y. Hattori, W. Lee, S.Y. Jung et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)

    Google Scholar 

  61. Q. Cheng, Z.M. Song, T. Ma, B.B. Smith, R. Tang, H.Y. Yu et al., Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett. 13, 4969–4974 (2013)

    Article  Google Scholar 

  62. Z.M. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju et al., Origami lithium-ion batteries. Nat. Commun. 5, 3140 (2014)

    Google Scholar 

  63. Z.Y. Wei, Z.V. Guo, L. Dudte, H.Y. Liang, L. Mahadevan, Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501 (2013)

    Article  Google Scholar 

  64. C. Lv, D. Krishnaraju, G. Konjevod, H.Y. Yu, H.Q. Jiang, Origami based mechanical metamaterials. Sci. Rep. 4, 5979 (2014)

    Google Scholar 

  65. Y. Cho, J.H. Shin, A. Costa, T.A. Kim, V. Kunin, J. Li et al., Engineering the shape and structure of materials by fractal cut. PNAS 111, 17390–17395 (2014)

    Article  Google Scholar 

  66. T.C. Shyu, P.F. Damasceno, P.M. Dodd, A. Lamoureux, L. Xu, M. Shlian et al., A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015)

    Article  Google Scholar 

  67. Z.M. Song, X. Wang, C. Lv, Y.H. An, M.B. Liang, T. Ma et al., Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 5, 10988 (2015)

    Article  Google Scholar 

  68. K.-I. Jang, H.U. Chung, S. Xu, C.H. Lee, H. Luan, J. Jeong et al., Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6, 6566 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Y. (2016). Mechanics and Designs of Stretchable Bioelectronics. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics