Skip to main content

Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging for Health Monitoring

  • Chapter
  • First Online:

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Wearable sensors have the potential to enable longitudinal, objective health monitoring in patients with chronic diseases, including cardiac rhythm disorders, neurological and movement disorders, diabetes, and pain. However, conventional wearable devices are typically comprised of rigid, packaged electronics, which may compromise overall signal fidelity and wearer comfort during activities of daily living and sleep. In this chapter, we present recent advances in the development of thin and stretchable epidermal systems for biometric data measurements. These non-invasive epidermal systems are fully integrated with multiple sensors, an analog front end module, a radio for wireless communication , onboard flash memory, a rechargeable battery all encapsulated in a soft, stretchable and water-resistant silicone, and with an air permeable adhesive layer that interfaces with the human skin.  The encapsulated system intimately couples with the skin at multiple locations on the body. We present results showing the potential of this technology to quantitatively assess bio-kinematics and electrophysiological signals. Finally, we provide perspectives on remaining challenges and opportunities to achieve clinical validation and commercial adoption of these technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Patel, Z. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21–38 (2012)

    Google Scholar 

  2. P. Bonato, Wearable sensors and systems. From enabling technology to clinical applications. IEEE Eng. Med. Biol. Mag. 29, 25–36 (2010)

    Article  Google Scholar 

  3. X.F. Teng, Y.T. Zhang, C.C.Y. Poon, P. Bonato, Wearable medical systems for p-health. IEEE Rev. Biomed. Eng. 1, 62–74 (2008)

    Article  Google Scholar 

  4. D.H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  5. S. Xu et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)

    Article  Google Scholar 

  6. C.H. Lee et al., Soft core/shell packages for stretchable electronics. Adv. Funct. Mater. 25, 3698–3704 (2015)

    Article  Google Scholar 

  7. J. Kim et al., Epidermal electronics with advanced capabilities in near field communication. Small 11, 906–912 (2014)

    Article  Google Scholar 

  8. J.A. Rogers, T. Someya, Y.G. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  9. M. Kaltenbrunner et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)

    Article  Google Scholar 

  10. S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25, 179–181 (2004)

    Article  Google Scholar 

  11. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA. 101, 9966–9970 (2004)

    Google Scholar 

  12. S.J. Benight, C. Wang, J.B.H. Tok, Z.A. Bao, Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013)

    Article  Google Scholar 

  13. S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37, 207–217 (2012)

    Article  Google Scholar 

  14. D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  Google Scholar 

  15. D.H. Kim, J.Z. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z.J. Liu et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 105, 18675–18680 (2008)

    Article  Google Scholar 

  16. S.S. Lobodzinski, ECG patch monitors for assessment of cardiac rhythm abnormalities. Prog. Cardiovasc. Dis. 56, 224–229 (2013)

    Article  Google Scholar 

  17. E.A. Clancy, N. Hogan, Multiple site electromyograph amplitude estimation. IEEE Trans. Biomed. Eng. 42, 203–211 (1995)

    Article  Google Scholar 

  18. S.H. Roy, B.T. Cole, L.D. Gilmore, C.J. De Luca, C.A. Thomas, M.M. Saint-Hilaire, S.H. Nawab, High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity. Mov. Disord. 28, 1080–1087 (2013)

    Article  Google Scholar 

  19. A.I. Meigal, S. Rissanen, M.P. Tarvainen, P.A. Karjalainen, I.A. Iudina-Vassel, O. Airaksinen, M. Kankaanpää, Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. 19, e206–e213 (2009)

    Article  Google Scholar 

  20. R. Moddemeijer, On estimation of entropy and mutual information of continuous distributions. Sig. Process. 16, 233–248 (1989)

    Article  MathSciNet  Google Scholar 

  21. J.W. Sammon, A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 5, 401–409 (1969)

    Article  Google Scholar 

  22. M. Morris, E.F. Huxham, J. McGinley, K. Dodd, R. Iansek, The biomechanics and motor control of gait in Parkinson disease. Clin. Biomech. 16, 459–470 (2001)

    Article  Google Scholar 

  23. E. Tandberg, J.P. Larsen, K. Karlsen, A community-based study of sleep disorders in patients with Parkinson’s disease. Mov. Disord. 13, 895–899 (1998)

    Article  Google Scholar 

  24. A. Luke, K.C. Maki, N. Barhey, R. Cooper, D. McGee, Simultaneous monitoring of heart rate and motion to assess energy expenditure. Med. Sci. Sports Exerc. 29, 144–148 (1997)

    Article  Google Scholar 

  25. D. Son et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014)

    Article  Google Scholar 

  26. S. Parvaneh et al., Regulation of cardiac autonomic nervous system control across frailty statuses: a systematic review. Gerontology 62(1), 3–15 (2015)

    Google Scholar 

  27. M. Schwenk et al., Frailty and technology: a systematic review of gait analysis in those with frailty. Gerontology 60, 79–89 (2014)

    Article  Google Scholar 

  28. B. Najafi, T. Khan, J. Wrobel, Laboratory in a box: wearable sensors and its advantages for gait analysis, in Conference Proceedings IEEE Engineering in Medicine Biology Society (2011), pp. 6507–6510

    Google Scholar 

  29. M. Achey et al., The past, present, and future of telemedicine for Parkinson’s disease. Mov. Disord. 29, 871–883 (2014)

    Article  Google Scholar 

  30. J.M. Kelly, R.E. Strecker, M.T. Bianchi, Recent developments in home sleep-monitoring devices. ISRN Neurol. 2012, 1–10 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Ghaffari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raj, M. et al. (2016). Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging for Health Monitoring . In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics