Skip to main content

BAW Piezoelectric Resonators

  • Chapter
  • First Online:
Piezoelectric MEMS Resonators

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter describes basic properties and modeling of resonators using acoustic waves propagating in a solid body. This type of waves is called the bulk acoustic wave (BAW), which can be excited and detected efficiently using piezoelectricity. The resonators are widely used in various applications such as clock generation, frequency filtering, and sensing. The most popular ones are crystal quartz resonators [1] for relatively low frequency applications (<100 MHz). Recently BAW resonators fabricated by thin film and micromachining technologies, i.e., film bulk acoustic resonators (FBARs) [2], are getting popular for relatively high frequency applications (>1–3 GHz) such as duplexers used in mobile and smart phones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vig JR (2000) Quartz crystals and oscillators: a tutorial. http://www.am1.us/Local_Papers/U11625%20VIG-TUTORIAL.pdf

  2. Ruby R, Bradley P, Oshmyansky Y, Chien A (2001) Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In: Proc. IEEE ultrason. symp., pp 813–821

    Google Scholar 

  3. Lam CS (2008) A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In: Proc. IEEE ultrason. symp., pp 694–704

    Google Scholar 

  4. Rosenbaum JF (1988) 10.5 Butterworth-Van Dyke equivalent circuit. In: Bulk acoustic wave theory and devices. Artech House, London, pp 389–191

    Google Scholar 

  5. Hashimoto K (2000) 5.4 Impedance element filters. In: Surface acoustic wave devices in telecommunications. Springer, Berlin, pp 149–160

    Google Scholar 

  6. Larson JD, Bradley P, Wartenberg S, Ruby RC (2000) Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system. In: Proc. IEEE ultrason. symp., pp 863–868

    Google Scholar 

  7. Feld DA, Parker R, Ruby R, Bradley P, Dong S (2008) After 60 years: a new formula for computing quality factor is warranted. In: Proc. IEEE ultrason. symp., pp 431–436

    Google Scholar 

  8. Mason WP (1964) Piezoelectric crystals and mechanical resonators. In: Mason WP (ed) Physical acoustics: principles and methods, vol IA. Academic Press, New York, pp 335–416

    Chapter  Google Scholar 

  9. Kino GS (1987) Chapter 1: Sound wave propagation. In: Acoustic waves: devices, imaging, and analog processing. Prentice-Hall, Englewood Cliffs, pp 1–81

    Google Scholar 

  10. Lakin KM, Belsick J, McDonald JF, McCarron KT (2001) Improved bulk wave resonator coupling coefficient for wide bandwidth filters. In: Proc. IEEE ultrason. symp., pp 827–831

    Google Scholar 

  11. Smythe R, Angove R (1988) Chemically-milled UHF SC-Cut resonators. In: Proc. IEEE freq. contr. symp., pp 73–77

    Google Scholar 

  12. Grudkowski T, Black J, Reeder T, Cullen DE, Wagner RA (1980) Fundamental-mode VHF/UHF miniature acoustic resonators and filters on silicon. Applied Physics Letters 37: 993–995

    Article  Google Scholar 

  13. Nakamura K, Sasaki H, Shimizu H (1981) A piezoelectric composite resonator consisting of a ZnO film on an anisotropically etched silicon substrate. Japanese Journal of Applied Physics 20:111–114

    Article  Google Scholar 

  14. Lakin KM, Wang J (1981) Acoustic bulk wave composite resonators. Applied Physics Letters 39(3):125–128

    Article  Google Scholar 

  15. Nishihara T, Yokoyama T, Miyashita T, Satoh Y (2002) High performance and miniature thin film bulk acoustic wave filters for 5 GHz. In: Proc. IEEE ultrason. symp., pp 969–972

    Google Scholar 

  16. Satoh H, Ebata Y, Suzuki H, Narahara C (1985) An air gap type piezoelectric composite resonator. In: Proc. IEEE freq. contr. symp., pp 361–366

    Google Scholar 

  17. Taniguchi S, Yokoyama T, Iwaki M, Nishihara T, Ueda M, Satoh Y (2007) An air-gap type FBAR filter fabricated using a thin sacrificed layer on a flat substrate. In: Proc. IEEE ultrason. symp., pp 600–603

    Google Scholar 

  18. Lakin KM, McCarron KT, Rose RE (1995) Solidly mounted resonators and filters. In: Proc. IEEE ultrason. symp., pp 905–908

    Google Scholar 

  19. Ruby R (2007) Review and comparison of bulk acoustic wave FBAR, SMR technology. In: Proc. IEEE ultrason. symp., pp 1029–1040

    Google Scholar 

  20. Marksteiner S, Kaitila J, Fattinger GG, Aigner R (2005) Optimization of acoustic mirrors for solidly mounted BAW resonators. In: Proc. IEEE ultrason. symp., pp 329–332

    Google Scholar 

  21. Wang JS, Lakin KM (1981) Sputtered AlN films for bulk-acoustic-wave devices. In: Proc. IEEE ultrason. symp., pp 502–505

    Google Scholar 

  22. Michin S, Oshmyansky Y (2009) Chapter 7: Thin film deposition for BAW devices. In: Hashimoto K (ed) RF bulk acoustic wave filters for communications. Artech House, Boston, pp 173–196

    Google Scholar 

  23. Misu K, Nagatsuka T, Wadaka S, Maeda C, Yamada A (1998) Film bulk acoustic wave filters using lead titanate on silicon substrate. In: Proc. IEEE ultrason. symp., pp 1091–1094

    Google Scholar 

  24. Larson JD, Gilbert SR, Xu B (2004) PZT material properties at UHF and microwave frequencies derived from FBAR measurements. In: Proc. IEEE ultrason. symp., pp 173–177

    Google Scholar 

  25. Aigner R, Elbrecht L (2009) Chapter 5: Design and fabrication of BAW devices. In: Hashimoto K (ed) RF bulk acoustic wave filters for communications. Artech House, Boston, pp 91–115

    Google Scholar 

  26. Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Advanced Materials 21(5):593–596

    Article  Google Scholar 

  27. Moreira M, Bjurström J, Katardjev I, Yantchev V (2011) Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 86:23–26

    Article  Google Scholar 

  28. Matloub R, Artieda A, Sandu C, Milyutin E, Muralt P (2011) Electromechanical properties of Al0.9Sc0.1N thin films evaluated at 2.5 GHz film bulk acoustic resonators. Applied Physics Letters 99(9):092903-1–092903-3

    Article  Google Scholar 

  29. Yokoyama T, Iwaki Y, Onda Y, Nishihara T, Sasajima Y, Ueda M (2014) Effect of Mg and Zr co-doping on piezoelectric AlN thin films for bulk acoustic wave resonators. IEEE Transactions on Ultrasonics, Ferroelectronics, & Frequency Control 61(8):1322–1328

    Article  Google Scholar 

  30. Yokoyama T, Nishihara T, Taniguchi S, Iwaki M, Satoh Y, Ueda M, Miyashita T (2004) New electrode material for low-loss and high-Q FBAR filters. In: Proc. IEEE ultrason. symp., pp429–432

    Google Scholar 

  31. Nakamura K, Ohashi Y, Shimizu H (1986) UHF bulk acoustic wave filters utilizing thin ZnO/SiO2 diaphragms on silicon. Japanese Journal of Applied Physics 25(3):371–375

    Article  Google Scholar 

  32. Zou Q, Bi F, Tsuzuki G, Bradley P, Ruby R (2013) Temperature-compensated FBAR duplexer for band 13. In: Proc. IEEE ultrason. symp., pp 236–238

    Google Scholar 

  33. Matsuda S, Hara M, Miura M, Matsuda T, Ueda M, Satoh Y, Hashimoto K (2011) Correlation between temperature coefficient of elasticity and Fourier transform infrared spectra of silicon dioxide films for surface acoustic wave devices. IEEE Transactions on Ultrasonics, Ferroelectronics, & Frequency Control 58(8):1684–1687

    Article  Google Scholar 

  34. Auld BA (1989) Chapter 10: Acoustic waveguide. In: Acoustic waves and fields in solids, vol II. Krieger, Malabar, FL, pp 63–220

    Google Scholar 

  35. Lason JD, Ruby RC, Bradley P (1999) Bulk acoustic wave resonator with improved lateral mode suppression. US Patent 6,215,375 B1, 1999

    Google Scholar 

  36. Ruby R, Larson JD, Feng C, Fazzio S (2005) The effect of perimeter geometry on FBAR resonator electrical performance. In: Technical digest, IEEE MTT-S microwave symp., pp217–220

    Google Scholar 

  37. Kaitila J, Ylilammi M, Ellä J (1999) Resonator structure and a filter comprising such a resonator structure. US Patent 6,812,619 B1, 1999

    Google Scholar 

  38. Feng H, Fazzio RS, Ruby R, Bradley P (2004) Thin film bulk acoustic resonator with a mass loaded perimeter. US Patent 7280007 B2, 2004

    Google Scholar 

  39. Fattinger GG, Marksteiner S, Kaitila J, Aigner R (2005) Optimization of acoustic dispersion for high performance thin film BAW resonators. In: Proc. IEEE ultrason. symp., pp 1175–1178

    Google Scholar 

  40. Kaitila J (2009) Chapter 3: BAW device basics. In: Hashimoto K (ed) RF bulk acoustic wave filters for communications. Artech House, Boston, pp 51–90

    Google Scholar 

  41. Rosenbaum JF (1988) Bulk acoustic wave theory and devices. Artech House, Boston

    MATH  Google Scholar 

  42. Hashimoto K (ed) (2009) RF bulk acoustic wave filters for communications. Artech House, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ya Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hashimoto, Ky. (2017). BAW Piezoelectric Resonators. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28688-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28686-0

  • Online ISBN: 978-3-319-28688-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics