Skip to main content

Quality Factor and Coupling in Piezoelectric MEMS Resonators

  • Chapter
  • First Online:

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

A piezoelectric-based resonator is an electromechanical device in which electrical and mechanical energies are reciprocally converted to each other at a resonance frequency through the two-way coupling between stress and electric field in a piezoelectric material. Moreover, the mechanical energy in the resonator body and the applied electrical energy through the metallic electrodes convert from potential to kinetic and back in every vibration half cycle (Fig. 5.1). Therefore, the overall performance of a resonant system is determined by both of the energy conversion mechanisms mentioned above. To quantify the efficiency of these energy conversions in a resonator, there are two specific parameters defined as electromechanical coupling factor and quality factor (Q).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brand O, Heinrich S, Hierold C, Korvink JG, Dufour I, Fedder GK, Tabata O, Josse F (2015) Resonant MEMS. Wiley, New York, NY

    Book  Google Scholar 

  2. Bahreyni B (2008) Fabrication & design of resonant microdevices. William Andrew, New York, NY

    Google Scholar 

  3. Djurić Z (2000) Mechanisms of noise sources in microelectromechanical systems. Microelectron Reliabil 40(6):919–932

    Article  Google Scholar 

  4. Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83(1):34

    Article  MathSciNet  MATH  Google Scholar 

  5. Vig JR, Yoonkee K (1999) Noise in microelectromechanical system resonators. IEEE Trans Ultrason Ferroelectr Freq Control 46(6):1558–1565

    Article  Google Scholar 

  6. Ballato A, Joseph K, John B, Ahmad S (1996) Dissipation in ceramic resonators and transducers. In: 50th, Proceedings of the 1996 IEEE international frequency control symposium, pp 371–378

    Google Scholar 

  7. Uchino K, Hirose S (2001) Loss mechanisms in piezoelectrics: how to measure different losses separately. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):307–321

    Article  Google Scholar 

  8. Holland R (1967) Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans Sonics Ultrason 14(1):18–20

    Article  Google Scholar 

  9. Smits JG (1976) Influence of moving domain walls and jumping lattice defects on complex material coefficients of piezoelectrics. IEEE Trans Sonics Ultrason 23(3):168–173

    Article  Google Scholar 

  10. Ballato A et al (1996) Dissipation in ceramic resonators and transducers. In: 50th, Proceedings of the 1996 IEEE international frequency control symposium, 1996

    Google Scholar 

  11. Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32(14):R57

    Article  Google Scholar 

  12. Raju GG (2003) Dielectrics in electric fields, vol 19. CRC Press, London

    Book  Google Scholar 

  13. Loebl HP, Metzmacher C, Milsom RF, Lok P, Van Straten F, Tuinhout A (2004) RF bulk acoustic wave resonators and filters. J Electroceram 12(1–2):109–118

    Article  Google Scholar 

  14. Sherrit S, Wiederick HD, Mukherjee BK (1997) Accurate equivalent circuits for unloaded piezoelectric resonators. In: Proceedings of the IEEE ultrasonics symposium, 1997, vol. 2, pp931–935

    Google Scholar 

  15. Kelly J, Ballato A, Safari A (1996) The effect of a complex piezoelectric coupling coefficient on the resonance and antiresonance frequencies of piezoelectric ceramics. In: Proceedings of the 10th IEEE on applications of ferroelectrics, 1996, pp 825–828

    Google Scholar 

  16. Arlt G, Dederichs H (1980) Complex elastic, dielectric and piezoelectric constants by domain wall damping in ferroelectric ceramics. Ferroelectrics 29(1):47–50

    Article  Google Scholar 

  17. Mezheritsky AV (2004) Elastic, dielectric, and piezoelectric losses in piezoceramics: how it works all together. IEEE Trans Ultrason Ferroelectr Freq Control 51(6):695–707

    Google Scholar 

  18. Tsurumi T, Kil YB, Nagatoh K, Kakemoto H, Wada S, Takahashi S (2002) Intrinsic elastic, dielectric, and piezoelectric losses in lead zirconate titanate ceramics determined by an immittance‐fitting method. J Am Ceram Soc 85(8):1993–1996

    Article  Google Scholar 

  19. Brennan KF (1999) The physics of semiconductors: with applications to optoelectronic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Ghaffari S, Chandorkar SA, Wang S, Ng EJ, Ahn CH, Hong V, Yang Y, Kenny TW (2013) Quantum limit of quality factor in silicon micro and nano mechanical resonators. Sci Rep 3:3244

    Google Scholar 

  21. Akhiezer A (1939) On the absorption of sound in solids. J Phys (Moscow) 1(1):277–287

    MATH  Google Scholar 

  22. Landau LD, Rumer YB (1937) On sound absorption in solids. Phys Zs Soviet Un 11:8–15

    Google Scholar 

  23. Nowick A, Berry D (1972) Anelastic relaxation in crystalline solids. Academic, New York, NY

    Google Scholar 

  24. Tabrizian R, Rais-Zadeh M, Ayazi F (2009) Effect of phonon interactions on limiting the fQ product of micromechanical resonators. In: International solid-state sensors, actuators and microsystems conference, 2009. Transducers 2009, pp 2131–2134

    Google Scholar 

  25. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600

    Article  Google Scholar 

  26. Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230

    Article  MATH  Google Scholar 

  27. Yasumura KY, Stowe TD, Chow EM, Pfafman T, Kenny TW, Stipe BC, Rugar D (2000) Quality factors in micron-and submicron-thick cantilevers. J Microelectromech Syst 9(1):117–125

    Article  Google Scholar 

  28. Abdolvand R, Johari H, Ho GK, Erbil A, Ayazi F (2006) Quality factor in trench-refilled polysilicon beam resonators. J Microelectromech Syst 15(3):471–478

    Article  Google Scholar 

  29. Guo X, Yi Y-B, Pourkamali S (2013) A finite element analysis of thermoelastic damping in vented MEMS beam resonators. Int J Mech Sci 74:73–82

    Article  Google Scholar 

  30. Pippard AB (1960) Theory of ultrasonic attenuation in metals and magneto-acoustic oscillations. Proc R Soc Lond 257(1289):165–193

    Article  MathSciNet  MATH  Google Scholar 

  31. Mason WP, Bateman TB (1964) Ultrasonic wave propagation in doped n-germanium and p-silicon. Phys Rev 134(5A):A1387

    Article  Google Scholar 

  32. Morse RW, Bohm HV (1957) Superconducting energy gap from ultrasonic attenuation measurements. Phys Rev 108(4):1094

    Article  Google Scholar 

  33. Hutson AR, White DL (1962) Elastic wave propagation in piezoelectric semiconductors. J Appl Phys 33(1):40–47

    Article  Google Scholar 

  34. Nine HD, Truell R (1961) Photosensitive-ultrasonic properties of cadmium sulfide. Phys Rev 123(3):799

    Article  Google Scholar 

  35. Gokhale VJ, Rais-Zadeh M (2014) Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators. Sci Rep 4:5617

    Article  Google Scholar 

  36. Hao Z, Erbil A, Ayazi F (2003) An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sensors Actuat A Phys 109(1):156–164

    Article  Google Scholar 

  37. Hao Z, Ayazi F (2007) Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators. Sensors Actuat Phys 134(2):582–593

    Article  Google Scholar 

  38. Jing W, Ren Z, Nguyen CTC (2004) 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1607–1628

    Article  Google Scholar 

  39. Kun W, Wong AC, Nguyen CTC (2000) VHF free-free beam high-Q micromechanical resonators. J Microelectromech Syst 9(3):347–360

    Article  Google Scholar 

  40. Li S-S, Lin Y-W, Xie Y, Ren Z, Nguyen CT-C (2004) Micromechanical “hollow-disk” ring resonators. In: 17th IEEE international conference on (MEMS) micro electro mechanical systems, 2004, pp 821–824

    Google Scholar 

  41. Lakin KM (2005) Thin film resonator technology. IEEE Trans Ultrason Ferroelectr Freq Control 52(5):707–716

    Article  Google Scholar 

  42. Newell WE (1965) Face-mounted piezoelectric resonators. Proc IEEE 53(6):575,581

    Google Scholar 

  43. Pandey M, Reichenbach RB, Zehnder AT, Lal A, Craighead HG (2009) Reducing anchor loss in MEMS resonators using mesa isolation. J Microelectromech Syst 18(4):836–844

    Article  Google Scholar 

  44. Harrington BP, Abdolvand R (2011) In-plane acoustic reflectors for reducing effective anchor loss in lateral–extensional MEMS resonators. J Micromech Microeng 21(8):085021

    Article  Google Scholar 

  45. Mohammadi S, Eftekhar AA, Khelif A, Hunt WD, Adibi A (2008) Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Appl Phys Lett 92(22):221905

    Article  Google Scholar 

  46. Mohammadi S et al (2010) Support loss suppression in micromechanical resonators by the use of phononic band gap structures. In: OPTO, international society for optics and photonics, 2010

    Google Scholar 

  47. Sorenson L, Fu JL, Ayazi F (2011) One-dimensional linear acoustic bandgap structures for performance enhancement of AlN-on-silicon micromechanical resonators. In: 16th International solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011, pp 918–921

    Google Scholar 

  48. Lin C-M et al (2014) Anchor loss reduction in AlN Lamb wave resonators using phononic crystal strip tethers. In: IEEE international frequency control symposium (FCS), 2014

    Google Scholar 

  49. Cho YH, Pisano AP, Howe RT (1994) Viscous damping model for laterally oscillating microstructures. J Microelectromech Syst 3(2):81–87

    Article  Google Scholar 

  50. Vibration transmission and support loss in MEMS sensors by Benjamin Chouvion

    Google Scholar 

  51. Candler RN, Hopcroft M, Kim B, Park W-T, Melamud R, Agarwal M, Yama G, Partridge A, Lutz M, Kenny TW (2006) Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J Microelectromech Syst 15(6):1446–1456

    Article  Google Scholar 

  52. Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7):073001

    Article  Google Scholar 

  53. Verbridge SS, Ilic R, Craighead HG, Parpia JM (2008) Size and frequency dependent gas damping of nanomechanical resonators. Appl Phys Lett 93(1):013101

    Article  Google Scholar 

  54. Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76(6):061101

    Article  Google Scholar 

  55. Seoánez C, Guinea F, Castro-Neto AH (2008) Surface dissipation in nanoelectromechanical systems: unified description with the standard tunneling model and effects of metallic electrodes. Phys Rev B 77(12):125107

    Article  Google Scholar 

  56. Yang J, Ono T, Esashi M (2002) Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J Microelectromech Syst 11(6):775–783

    Article  Google Scholar 

  57. Landau LD, Lifshitz EM (1986) Theory of elasticity, vol 7. Course Theor Phys 3:109

    Google Scholar 

  58. Lücke K (1956) Ultrasonic attenuation caused by thermoelastic heat flow. J Appl Phys 27(12):1433–1438

    Article  MathSciNet  Google Scholar 

  59. Mason WP, Bateman TB (1964) Ultrasonic‐wave propagation in pure silicon and germanium. J Acoust Soc Am 36(4):644–652

    Article  Google Scholar 

  60. Oliver DW, Slack GA (1966) Ultrasonic attenuation in insulators at room temperature. J Appl Phys 37(4):1542–1548

    Article  Google Scholar 

  61. Papadakis EP (1965) Ultrasonic attenuation caused by scattering in polycrystalline metals. JAcoust Soc Am 37(4):711–717

    Google Scholar 

  62. Robert A (2004) Volume manufacturing of BAW-filters in a CMOS fab. In: Acoustic wave device symposium, pp 129–34

    Google Scholar 

  63. Ruby R (2011) A decade of FBAR success and what is needed for another successful decade. In: Symposium on piezoelectricity, acoustic waves and device applications (SPAWDA), 2011, pp 365–369

    Google Scholar 

  64. Bhatia AB, Moore RA (1959) Scattering of high frequency sound waves in polycrystalline materials II. J Acoust Soc Am 31(8):1140–1141

    Article  Google Scholar 

  65. Bhatia AB (1967) Ultrasonic absorption: an introduction to the theory of sound absorption and dispersion in gases, liquids, and solids. Courier Corporation, North Chelmsford, MA

    Google Scholar 

  66. MacFarlane RE, Rayne JA (1967) Ultrasonic attenuation in the noble metals. Phys Rev 162(3):532

    Article  Google Scholar 

  67. Hepfer KC, Rayne JA (1971) Ultrasonic attenuation in aluminum. Phys Rev B 4(4):1050

    Article  Google Scholar 

  68. Jones CK, Rayne JA (1964) Ultrasonic attenuation in tungsten and molybdenum up to 1 Gc/s. Phys Lett 13(4):282–283

    Article  Google Scholar 

  69. Mansfeld GD, Alekseev SG, Kotelyansky IM (2001) Acoustic HBAR spectroscopy of metal (W, Ti, Mo, Al) thin films. IEEE Ultrason Symp 1:415–418

    Google Scholar 

  70. Besson R (1976) A new piezoelectric resonator design. In: IEEE 30th annual symposium on frequency control, pp 78–83

    Google Scholar 

  71. Besson RJ, Moutrey M, Galliou S, Marionnet F, Gonzalez F, Guillemot Ph, Tjoelker R, Diener W, Kirk A (1999) 10 MHz hyperstable quartz oscillators performances. In: Proceedings of the 1999 joint meeting of the European frequency and time forum, 1999 and the IEEE international frequency control symposium, 1999, vol 1, pp 326–330

    Google Scholar 

  72. Hung L-W, Nguyen CTC (2011) Capacitive-piezoelectric AlN resonators with Q> 12,000. In: 2011 IEEE 24th international conference on micro electro mechanical systems (MEMS), pp 173–176

    Google Scholar 

  73. Yen T-T, Pisano AP, Nguyen CTC (2013) High-Q capacitive-piezoelectric AlN Lamb wave resonators. In: 2013 IEEE 26th international conference on micro electro mechanical systems (MEMS), pp 114–117

    Google Scholar 

  74. Humad S, Abdolvand R, Ho GK, Piazza G, Ayazi F (2003) High frequency micromechanical piezo-on-silicon block resonators. In: IEDM'03 technical digest IEEE international electron devices meeting, 2003, pp 39–3

    Google Scholar 

  75. Abdolvand R, Lavasani HM, Ho GK, Ayazi F (2008) Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications. IEEE Trans Ultrason Ferroelectr Freq Control 55(12):2596–2606

    Article  Google Scholar 

  76. Abdolvand R, Ho GK, Butler J, Ayazi F (2007) ZnO-onnanocrystalline-diamond lateral bulk acoustic resonators. IN: Proceedings of the 20th IEEE International conference on Micro electro mechanical systems, Kobe, Japan, Jan 2007, pp 795–798

    Google Scholar 

  77. Fatemi H, Zeng H, Carlisle JA, Abdolvand R (2013) High-frequency thin-film AlN-on-diamond lateral–extensional resonators. J Microelectromech Syst 22(3):678–686H

    Article  Google Scholar 

  78. Lin CM, Chen YY, Felmetsger VV, Senesky DG, Pisano AP (2012) AlN/3C–SiC composite plate enabling high‐frequency and high‐Q micromechanical resonators. Adv Mater 24(20):2722–2727

    Article  Google Scholar 

  79. Pan W, Ayazi F (2010) Thin-film piezoelectric-on-substrate resonators with Q enhancement and TCF reduction. In: 2010 IEEE 23rd international conference on micro electro mechanical systems (MEMS), pp 727–730

    Google Scholar 

  80. Shahmohammadi M, Harrington BP, Abdolvand R (2013) Turnover temperature point in extensional-mode highly doped silicon microresonators. IEEE Trans Electron Dev 60(3):1213–1220

    Article  Google Scholar 

  81. Baborowski J, Bourgeois C, Pezous A, Muller C, Dubois MA (2007) Piezoelectrically activated silicon resonators. In: 2007 Joint with the 21st European frequency and time forum. IEEE international frequency control symposium, pp 1210–1213

    Google Scholar 

  82. Smits JG (1978) Eigenstates of coupling factor and loss factor of piezoelectric ceramics IEEE standard on piezoelectricity (ANSI/IEEE Standard 176-1987). The Institute of Electrical and Electronics Engineers, Inc, New York, NY

    Google Scholar 

  83. Muralt P, Antifakos J, Cantoni M, Lanz R, Martin F (2005) Is there a better material for thin film BAW applications than A1N? IEEE Ultrason Symp 1:315–320

    Google Scholar 

  84. Van Dyke KS (1925) The electric network equivalent of a piezoelectric resonator. Phys Rev 25(6):895

    Google Scholar 

  85. Rosenbaum JF (1988) Bulk acoustic wave theory and devices. Artech House, Boston, MA

    MATH  Google Scholar 

  86. IEEE (1966) IEEE standard definitions and methods of measurement for piezoelectric vibrators. IEEE Std No. 177, p 1

    Google Scholar 

  87. Newell WE, Wickstrom RA (1969) The tunistor: a mechanical resonator for microcircuits. IEEE Trans Electron Dev 16(9):781–787

    Article  Google Scholar 

  88. Wang JS, Lakin KM (1981) Sputtered AlN films for bulk-acoustic-wave devices. Ppresented at the 1981 ultrasonics symposium, pp 502–505

    Google Scholar 

  89. Ruby RC, Bradley P, Oshmyansky Y, Chien A, Larson JD (2001) Thin film bulk wave acoustic resonators (FBAR) for wireless applications. IEEE Ultrason Symp 1:813–821

    Google Scholar 

  90. Piazza G, Stephanou PJ, Pisano AP (2007) Single-chip multiple-frequency ALN MEMS filters based on contour-mode piezoelectric resonators. J Microelectromech Syst 16(2):319–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abdolvand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdolvand, R., Fatemi, H., Moradian, S. (2017). Quality Factor and Coupling in Piezoelectric MEMS Resonators. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28688-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28686-0

  • Online ISBN: 978-3-319-28688-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics