Skip to main content

Computational Modeling Challenges

  • Chapter
  • First Online:
Piezoelectric MEMS Resonators

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

  • 4450 Accesses

Abstract

Accurate modeling of piezoelectric MEMS Resonators is key to reducing fabrication cycles or diagnosing issues with fabricated devices. Analytic models provide a first pass at assessing device performance but are idealized and do not represent actual device performance to sufficient accuracy, especially for the high-order bulk modes utilized in MEMS oscillators and filters. Computational modeling by the finite-element method has taken great strides in capturing greater detail in both geometry and physical behavior of these resonators. While continuing improvements in computational power have aided in this progress, it is the advances in both algorithms and methodology in coupling physical domains that have enabled greater accuracy compared to fabricated devices. In this chapter we review the key challenge areas in resonator design for which advances in computational modeling provide predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhugra H, Wang Y, Pan W, Lei D (2011) High performance pMEMS™ oscillators – the next generation frequency references. In: IEEE international electron devices meeting (IEDM), Washington, DC, 2011, pp 20.1.1–20.1.4

    Google Scholar 

  2. Ho GK, Abdolvand R, Ayazi F (2007) High-order composite bulk acoustic resonators. In: IEEE 20th international conference on micro electro mechanical systems, 2007. MEMS, pp 791–794

    Google Scholar 

  3. Gong S, Piazza G (2013) Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theory Tech 61(1):403–414

    Article  Google Scholar 

  4. Song Y-H, Gong S (2015) Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators. In: 2015 IEEE international electron devices meeting (IEDM), 2015

    Google Scholar 

  5. Pulskamp J, Bedair S, Polcawich R, Smith G, Martin J, Power B, Bhave S (2012) Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. IEEE Trans Ultrason Ferroelectr Freq Control 59(5):1043–1060

    Article  Google Scholar 

  6. Allik H, Hughes T (1970) Finite element method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157

    Article  Google Scholar 

  7. Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76(1–3):347–363

    Article  Google Scholar 

  8. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola, NY

    MATH  Google Scholar 

  9. Wang S, Bahr B, Li S-S (2015) Temperature coefficient of frequency modeling for CMOS-MEMS bulk mode composite resonators. IEEE Trans Ultrason Ferroelectr Freq Control 62(6):1166–1178

    Article  Google Scholar 

  10. Bathe K-J (1996) Finite element procedures. Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  11. Odabasioglu A, Celik M, Pileggi LT (1997) PRIMA: passive reduced-order interconnect macromodeling algorithm. In: Proceedings of the 1997 IEEE/ACM international conference on computer-aided design, Washington, DC, USA, 1997, pp 58–65

    Google Scholar 

  12. Coventor, Inc (2015) CoventorWare – MEMS simulation suite. Coventor, Inc, Waltham, MA, http://www.coventor.com

  13. Segovia-Fernandez J, Cremonesi M, Cassella C, Frangi A, Piazza G (2015) Anchor losses in AlN contour mode resonators. J Microelectromech Syst 24(2):265–275

    Article  Google Scholar 

  14. Lu Y, Horsley DA (2015) Modeling, fabrication, and characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers. J Microelectromech Syst 24(4):1142–1149

    Article  Google Scholar 

  15. Park KK, Lee HJ, Crisman P, Kupnik M, Oralkan O, Khuri-Yakub BT (2008) Optimum design of circular CMUT membranes for high quality factor in air. In: IEEE International Ultrasonics Symposium (IUS), pp 504–507

    Google Scholar 

  16. Ho GK, Abdolvand R, Sivapurapu A, Humad S, Ayazi F (2008) Piezoelectric-on-silicon lateral bulk acoustic wave micromechanical resonators. J Microelectromech Syst 17(2):512–520

    Article  Google Scholar 

  17. Lu Y, Heidari A, Horsley DA (2015) A high fill-factor annular array of high frequency piezoelectric micromachined ultrasonic transducers. J Microelectromech Syst 24(4):904–913

    Article  Google Scholar 

  18. Chandorkar SA, Agarwal M, Melamud R, Candler RN, Goodson KE, Kenny TW (2008) Limits of quality factor in bulk-mode micromechanical resonators. In: IEEE 21st international conference on Micro electro mechanical systems, MEMS 2008, pp 74–77

    Google Scholar 

  19. Tabrizian R, Rais-Zadeh M, Ayazi F (2009) Effect of phonon interactions on limiting the fQ product of micromechanical resonators. In: Solid-state sensors, actuators and microsystems conference, 2009. International TRANSDUCERS 2009, pp 2131–2134

    Google Scholar 

  20. Hao Z, Liao B (2010) An analytical study on interfacial dissipation in piezoelectric rectangular block resonators with in-plane longitudinal-mode vibrations. Sensor Actuat Phys 163(1):401–409

    Article  Google Scholar 

  21. Judge JA, Photiadis DM, Vignola JF, Houston BH, Jarzynski J (2007) Attachment loss of micromechanical and nanomechanical resonators in the limits of thick and thin support structures. J Appl Phys 101(1):013521

    Article  Google Scholar 

  22. Hao Z, Ayazi F (2007) Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators. Sensor Actuat Phys 134(2):582–593

    Article  Google Scholar 

  23. Hao Z, Pourkamali S, Ayazi F (2004) VHF single-crystal silicon elliptic bulk-mode capacitive disk resonators – part I: design and modeling. J Microelectromech Syst 13(6):1043–1053

    Article  Google Scholar 

  24. Li S-S, Lin Y-W, Xie Y, Ren Z, Nguyen CT (2004) Micromechanical ‘hollow-disk’ ring resonators. In: 17th IEEE international conference on micro electro mechanical systems, 2004 (MEMS), pp 821–824

    Google Scholar 

  25. Rabinovich D, Givoli D, Bécache E (2010) Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain. Int J Numer Methods Biomed Eng 26(10):1351–1369

    Article  MathSciNet  MATH  Google Scholar 

  26. Bindel DS, Govindjee S (2005) Elastic PMLs for resonator anchor loss simulation. Int J Numer Methods Eng 64(6):789–818

    Article  MATH  Google Scholar 

  27. Frangi A, Bugada A, Martello M, Savadkoohi PT (2013) Validation of PML-based models for the evaluation of anchor dissipation in MEMS resonators. Eur J Mech A Solids 37:256–265

    Article  MathSciNet  MATH  Google Scholar 

  28. Park Y-H, Park KC (2004) High-fidelity modeling of MEMS resonators – part II: coupled beam-substrate dynamics and validation. J Microelectromech Syst 13(2):248–257

    Article  Google Scholar 

  29. Segovia-Fernandez J, Xu C, Cassella C, Piazza G (2015) An alternative technique to perfectly matched layers to model anchor losses in MEMS resonators with undercut suspensions. In: 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), 2015, pp 985–988

    Google Scholar 

  30. Nowacki W (1986) Thermoelasticity, 2nd edn. Pergamon Press, Oxford

    MATH  Google Scholar 

  31. Chandorkar SA, Candler RN, Duwel A, Melamud R, Agarwal M, Goodson KE, Kenny TW (2009) Multimode thermoelastic dissipation. J Appl Phys 105(4):043505

    Article  Google Scholar 

  32. Aşkar Altay G, Cengiz Dökmeci M (1996) Fundamental variational equations of discontinuous thermopiezoelectric fields. Int J Eng Sci 34(7):769–782

    Article  MATH  Google Scholar 

  33. Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230

    Article  MATH  Google Scholar 

  34. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600

    Article  Google Scholar 

  35. Antkowiak B, Gorman JP, Varghese M, Carter DJD, Duwel AE (2003) Design of a high-Q, low-impedance, GHz-range piezoelectric MEMS resonator. In: 12th international conference on TRANSDUCERS, solid-state sensors, actuators and microsystems, 2003, vol 1,pp 841–846

    Google Scholar 

  36. Duwel A, Candler RN, Kenny TW, Varghese M (2006) Engineering MEMS resonators with low thermoelastic damping. J Microelectromech Syst 15(6):1437–1445

    Article  Google Scholar 

  37. Abdolvand R, Johari H, Ho GK, Erbil A, Ayazi F (2006) Quality factor in trench-refilled polysilicon beam resonators. J Microelectromech Syst 15(3):471–478

    Article  Google Scholar 

  38. Peake W, Thurston E (1954) The lowest resonant frequency of a water-loaded circular plate. J~Acoust Soc Am 26(2):166

    Article  Google Scholar 

  39. Bernstein JJ, Finberg SL, Houston K, Niles LC, Chen HD, Cross LE, Li KK, Udayakumar E (1997) Micromachined high frequency ferroelectric sonar transducers. IEEE Trans Ultrason Ferroelectr Freq Control 44(5):960–969

    Article  Google Scholar 

  40. Lavasani HM, Abdolvand R, Ayazi F (2015) Single-resonator dual-frequency AIN-on-Si MEMS oscillators. IEEE Trans Ultrason Ferroelectr Freq Control 62(5):802–813

    Article  Google Scholar 

  41. Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd edn. Pergamon Press, Oxford

    MATH  Google Scholar 

  42. Blom FR, Bouwstra S, Elwenspoek M, Fluitman JHJ (1992) Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol B 10(1):19–26

    Article  Google Scholar 

  43. Yang Y-J, Kamon M, Rabinovich VL, Ghaddar C, Deshpande M, Greiner K, Gilbert JR (2001) Modeling gas damping and spring phenomena in MEMS with frequency dependent macro-models. In: The 14th IEEE international conference on micro electro mechanical systems, 2001. MEMS 2001, pp 365–368

    Google Scholar 

  44. Frangi A, Spinola G, Vigna B (2006) On the evaluation of damping in MEMS in the slip–flow regime. Int J Numer Methods Eng 68(10):1031–1051

    Article  MATH  Google Scholar 

  45. Senturia SD (2007) Microsystem design. Springer, New York, NY

    Google Scholar 

  46. Cho J, Anderson M, Richards R, Bahr D, Richards C (2005) Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling. J Micromech Microeng 15(10):1797–1803

    Article  Google Scholar 

  47. Sammoura F, Smyth K, Bathurst S, Kim SG (2012) An analytical analysis of the sensitivity of circular piezoelectric micromachined ultrasonic transducers to residual stress. In: IEEE International Ultrasonics Symposium (IUS), pp 580–583

    Google Scholar 

  48. Geradin M, Rixen DJ (2014) Mechanical vibrations: theory and application to structural dynamics. John Wiley, New York, NY

    Google Scholar 

  49. Wang S, Popa LC, Weinstein D (2015) Piezoelectric nonlinearity in GaN Lamb mode resonators. In: 18th International conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), 2015, pp 989–992

    Google Scholar 

  50. Segovia-Fernandez J, Piazza G (2013) Thermal nonlinearities in contour mode AlN resonators. J Microelectromech Syst 22(4):976–985

    Article  Google Scholar 

  51. Lu R, Gong S (2015) Study of thermal nonlinearity in lithium niobate-based mems resonators. In: 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), 2015

    Google Scholar 

  52. Jhaveri R, Lu R, Gong S, Kamon M (2016) Distributed and thermo-acoustically coupled modeling for accurate prediction of thermal nonlinearity in piezoelectric MEMS resonators. In: Solid-state sensors, actuators, and microsystems workshop, Hilton Head, SC

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Stuart Traux for the description of fluid damping at high frequency and the helpful review of this text, Rahul Jhaveri for many of the simulations contained here, and Professor Songbin Gong for the many discussions on the topics contained here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattan Kamon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamon, M. (2017). Computational Modeling Challenges. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28688-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28686-0

  • Online ISBN: 978-3-319-28688-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics