Skip to main content

Non-Classical Probabilities from Pilot Wave Models

  • Conference paper
  • First Online:
Quantum Interaction (QI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9535))

Included in the following conference series:

  • 691 Accesses

Abstract

A class of models is defined which are in the broadest sense generalizations of the deBroglie-Bohm pilot wave model of quantum mechanics. It is shown that essentially any type of probability assignment – including, of course, quantum probability – can be obtained from this type of models. Therefore, pilot-wave models are one possible explanation for the occurrence of non-classical probabilities in systems which are not considered as fundamentally quantum but which show strong resemblances to quantum systems.

T. Filk — Financial support has been provided by the European Research Council under the European Communitys Seventh Framework Programme (FP7/20072013)/ ERC grant agreement no [294332], EvoEvo project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1, 85–97 (1994)

    Article  MathSciNet  Google Scholar 

  2. Aerts, D., Broekaert, J., Gabora, L., Veloz, T.: The guppy effect as interference. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) QI 2012. LNCS, vol. 7620, pp. 36–47. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Aerts, D., Sozzo, S.: What is quantum? unifying its micro-physical and structural appearance. In: Atmanspacher, H., Bergomi, C., Filk, T., Kitto, K. (eds.) QI 2014. LNCS, vol. 8951, pp. 12–23. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: A quantum-like model of Escherichia coli’s metabolism based on adaptive dynamics. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) QI 2012. LNCS, vol. 7620, pp. 60–67. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Atmanspacher, H.: Quantum approaches to consciousness. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2011). http://plato.stanford.edu/entries/qt-consciousness/

    Google Scholar 

  6. Atmanspacher, H., Römer, H., Walach, H.: Weak quantum theory: complementarity and entanglement in physics and beyond. Found. Phys. 32, 379–406 (2002)

    Article  MathSciNet  Google Scholar 

  7. Atmanspacher, H., Filk, T., Römer, H.: Weak quantum theory: formal framework and selected applications. In: Adenier, G., Khrennikov, A., Nieuwenhuizen, T. (eds.) Quantum Theory: Reconsideration of Foundations - 3, pp. 34–46. American Institut of Physics, New York (2006)

    Google Scholar 

  8. Atmanspacher, H., beim Graben, P., Filk, T.: Epistemic entanglement due to non-generating partitions of classical dynamical systems. Int. J. Theor. Phys. 52, 723–734 (2013)

    Article  MATH  Google Scholar 

  9. Beck, F., Eccles, J.: Quantum aspects of brain activity and the role of consciousness. Proc. Natl. Acad. Sci. U.S.A. 89, 11357–11361 (1992)

    Article  Google Scholar 

  10. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables I & II. Phys. Rev. 85(166–179), 180–193 (1952)

    Article  Google Scholar 

  11. Bohm, D., Hiley, B.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  12. Bruza, P., Kitto, K., Nelson, D., McEvoy, C.L.: Is there something quantum-like about the human mental lexicon? J. Math. Psychol. 53, 362–377 (2007)

    Article  MathSciNet  Google Scholar 

  13. Busemeyer, J., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychol. 50, 220–241 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Busemeyer, J., Bruza, P.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  15. Dürr, D., Teufel, S.: Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Springer, Heidelberg (2012)

    Google Scholar 

  16. Eliasmith, C.: Attractor network. Scholarpedia 2(10), 1380 (2007)

    Article  Google Scholar 

  17. Essfeld, M., Lazarovici, D., Dürr, D.: The ontology of quantum physics. Br. J. Philos. Sci. 65, 773–796 (2014)

    Article  Google Scholar 

  18. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, New York (1965)

    MATH  Google Scholar 

  19. Filk, T.: Quantum-like behavior of classical systems. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) QI 2012. LNCS, vol. 7620, pp. 196–206. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Filk, T., von Müller, A.: Quantum physics and consciousness: the quest for a common conceptual foundation. Mind Matter 7, 59–80 (2009)

    Google Scholar 

  21. Filk, T.: It is the theory which decides what we can observe (Einstein). In: Oktober, E., Dzhafarov, S.J. (eds.) Proceedings of the Winers Memorial Lectures 2014, Purde, 31. Oktober-3 - November 3, 2014 (to appear)

    Google Scholar 

  22. Gabora, L., Aerts, D.: Contextualizing concepts using a mathematical generalization of the quantum formalism. J. Exp. Theory Artif. Intell. 14, 327–358 (2002)

    Article  MATH  Google Scholar 

  23. Gärdenfors, P.: Conceptual Spaces. Bradford Books, MIT Press, Bradford (2000)

    Google Scholar 

  24. beim Graben, P., Atmanspacher, H.: Complementarity in classical dynamical systems. Found. Phys. 36, 291–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hameroff, S., Penrose, R.: Orchestrated reduction of quantum coherence in brainmicrotubules: a model for consciousness. In: Hameroff, S., Kahzniak, A., Scott, A. (eds.) Toward a Science of Consciousness, pp. 507–540. MIT Press, Cambridge (1996)

    Google Scholar 

  26. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  27. Holland, P.R.: The Quantum Theory of Motion: An Account of the DeBroglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  28. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational properties. Proc. Nat. Acad. Sci. (USA) 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  29. Khrennikov, A.: Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys. 29, 1065–1098 (1999)

    Article  MathSciNet  Google Scholar 

  30. Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finances. Springer, Heidelberg (2010)

    Book  Google Scholar 

  31. Lambert-Mogliansky, D.: Verallgemeinerte Messungen

    Google Scholar 

  32. Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9, 35–58 (1981)

    Article  Google Scholar 

  33. Penrose, R., Hameroff, S.: Consciousness in the universe: neuroscience, quantum space-time geometry and orch OR theory. J. Cosmol. 14, 1–17 (2011)

    Google Scholar 

  34. Pothos, E., Busemeyer, J.: A quantum probability model explanation for violations of rational decision theory. Proc. R. Soc. B 276, 2171–2178 (2009)

    Article  Google Scholar 

  35. Pylkkänen, P.: Mind, Matter and the Implicate Order. Springer, New York and Berlin (2007)

    MATH  Google Scholar 

  36. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. London Ser. B. 237(641), 37–72 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Filk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Filk, T. (2016). Non-Classical Probabilities from Pilot Wave Models. In: Atmanspacher, H., Filk, T., Pothos, E. (eds) Quantum Interaction. QI 2015. Lecture Notes in Computer Science(), vol 9535. Springer, Cham. https://doi.org/10.1007/978-3-319-28675-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28675-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28674-7

  • Online ISBN: 978-3-319-28675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics