Skip to main content

Visual Analytics of Electronic Health Records with a Focus on Time

  • Chapter
  • First Online:
Book cover New Perspectives in Medical Records

Part of the book series: TELe-Health ((TEHE))

Abstract

Visual Analytics is a field of computer science that deals with methods to perform data analysis using both computer-based methods and human judgment facilitated by direct interaction with visual representations of data. Electronic health record systems that apply Visual Analytics methods have the potential to provide healthcare stakeholders with much-needed cognitive support in exploring and querying records. This chapter presents Visual Analytics projects addressing five particular challenges of electronic health records: (1) The complexity of time-oriented data constitutes a cross-cutting challenge so that all projects need to consider design aspects of time-oriented data in one way or another. (2) As electronic health records encompass patient conditions and treatment, they are inherently heterogeneous data. (3) Scaling from single patients to cohorts requires approaches for relative time, space efficiency, and aggregation. (4) Data quality and uncertainty are common issues that need to be considered in real-world projects. (5) A user-centered design process and suitable interaction techniques are another cross-cutting challenge for each and every Visual Analytics project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner W (2011) Understanding the role and value of interaction: first steps. In: Miksch S, Santucci G (eds) Proceedings of the International Workshop Visual Analytics (EuroVA). Eurographics, Goslar, pp 17–20

    Google Scholar 

  2. Aigner W, Miksch S (2006) CareVis: integrated visualization of computerized protocols and temporal patient data. Artif Intell Med 37(3):203–218

    Article  PubMed  Google Scholar 

  3. Aigner W, Miksch S, Thurnher B, Biffl S (2005) PlanningLines: novel glyphs for representing temporal uncertainties and their evaluation. In: Proceedings of the 9th International Conference on Information Visualisation (IV), IEEE, pp 457–463

    Google Scholar 

  4. Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer, London

    Book  Google Scholar 

  5. Aigner W, Federico P, Gschwandtner T, Miksch S, Rind A (2012) Challenges of time-oriented visual analytics in healthcare. In: Caban JJ, Gotz D (eds) Proceedings of the VisWeek 2012 Workshop on Visual Analytics in Healthcare, pp 17–20

    Google Scholar 

  6. Aigner W, Rind A, Hoffmann S (2012) Comparative evaluation of an interactive time-series visualization that combines quantitative data with qualitative abstractions. Comput Graph Forum 31(3):995–1004

    Article  Google Scholar 

  7. Bade R, Schlechtweg S, Miksch S (2004) Connecting time-oriented data and information to a coherent interactive visualization. In: Dykstra-Erickson E, Tscheligi M (eds) Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI, pp 105–112

    Google Scholar 

  8. Bertini E, Lalanne D (2009) Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In: Proceedings of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration, VAKD, pp 12–20

    Google Scholar 

  9. Blumenstein K,Wagner M, Aigner W (2015) Cross–platform infoVis frameworks for multiple users, screens and devices: requirements and challenges. In: Proceedings of the DEXiS 2015 Workshop on Data Exploration for Interactive Surfaces. Workshop in conjunction with ACM ITS’15, Funchal

    Google Scholar 

  10. Caban JJ, Gotz D (2015) Visual analytics in healthcare – opportunities and research challenges. J Am Med Inform Assoc 22(2):260–262

    Article  PubMed  Google Scholar 

  11. Caban JJ, Gotz D, Perer A, Kharrazi H (eds) (2014) Proceedings of the 2014 Workshop on Visual Analytics in Healthcare. Available from: http://www.visualanalyticshealthcare.org/docs/VAHC2014.proceedings.pdf. Cited 6 Nov 2015

  12. Card SK, Mackinlay JD, Shneiderman B (eds) (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San Francisco

    Google Scholar 

  13. Chen M, Ebert D, Hagen H, Laramee R, van Liere R, Ma K, Ribarsky W, Scheuermann G, Silver D (2009) Data, information, and knowledge in visualization. IEEE Comput Graph Appl 29(1):12–19

    Article  CAS  PubMed  Google Scholar 

  14. Chittaro L, Combi C (2003) Visualizing queries on databases of temporal histories: new metaphors and their evaluation. Data Knowl Eng 44(2):239–264

    Article  Google Scholar 

  15. Endert A, Hossain MS, Ramakrishnan N, North C, Fiaux P, Andrews C (2014) The human is the loop: new directions for visual analytics. J Intell Inf Syst 43(3):411–435

    Article  Google Scholar 

  16. Federico P, Hoffmann S, Rind A, Aigner W, Miksch S (2014) Qualizon graphs: space-efficient time-series visualization with qualitative abstractions. In: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, AVI, ACM, pp 273–280

    Google Scholar 

  17. Federico P, Unger J, Amor-Amoros A, Sacchi L, Klimov D, Miksch S (2015) Gnaeus: utilizing clinical guidelines for knowledge-assisted visualisation of EHR cohorts. In: Bertini E, Roberts JC (eds) Proceedings of the EuroVis Workshop on Visual Analytics, EuroVA, Eurographics, pp 79–83

    Google Scholar 

  18. Grinter RE, Siek KA, Grimes A (2010) Is wellness informatics a field of human-centered health informatics? Interactions 17(1):76–79

    Article  Google Scholar 

  19. Gschwandtner T, Aigner W, Kaiser K, Miksch S, Seyfang A (2011) CareCruiser: exploring and visualizing plans, events, and effects interactively. In: Proceedings of the IEEE Pacific Visualization Symposium (PacificVis), pp 43–50

    Google Scholar 

  20. Gschwandtner T, Aigner W, Kaiser K, Miksch S, Seyfang A (2011) Design and evaluation of an interactive visualization of therapy plans and patient data. In: Proceedings of the 25th BCS Conference on Human-Computer Interaction, BCS-HCI, British Computer Society, pp 421–428

    Google Scholar 

  21. Gschwandtner T, Gärtner J, Aigner W, Miksch S (2012) A taxonomy of dirty time-oriented data. In: Multidisciplinary research and practice for information systems, Proceedings of the CD-ARES 2012, Springer, Berlin, LNCS 7465, pp 58–72

    Google Scholar 

  22. Gschwandtner T, AignerW, Miksch S, Gärtner J, Kriglstein S, Pohl M, Suchy N (2014) Time- cleanser: a visual analytics approach for data cleansing of time-oriented data. In: Lindstaedt S, Granitzer M, Sack H (eds) Proceedings of the 14th International Conference on Knowledge Technologies and Data-driven Business (i-KNOW 2014), ACM, pp 1–8

    Google Scholar 

  23. Gschwandtner T, Perer A, Bernard J (eds) (2015) Proceedings of the 2015 Workshop on Visual Analytics in Healthcare. ACM, New York

    Google Scholar 

  24. Gschwandtner T, Bögl M, Federico P, Miksch S (2016) Visual encodings of temporal uncertainty: a comparative user study. IEEE Trans Vis Comput Graph 22(1):539–548

    Article  Google Scholar 

  25. Hinum K, Miksch S, Aigner W, Ohmann S, Popow C, Pohl M, Rester M (2005) Gravi++: interactive information visualization to explore highly structured temporal data. J Univers Comput Sci 11(11):1792–1805

    Google Scholar 

  26. Keim D, Kohlhammer J, Ellis G, Mansmann F (eds) (2010) Mastering the information age – solving problems with visual analytics. Eurographics, Goslar

    Google Scholar 

  27. Keim DA, Mansmann F, Schneidewind J, Ziegler H (2006) Challenges in visual data analysis. In: Proceedings of the Tenth International Conference on Information Visualization, IV, pp 9–16

    Google Scholar 

  28. Kim W, Choi BJ, Hong EK, Kim SK, Lee D (2003) A taxonomy of dirty data. Data Min Knowl Disc 7(1):81–99

    Article  Google Scholar 

  29. Kosara R, Miksch S (2001) Metaphors of movement: a visualization and user interface for time-oriented, skeletal plans. Artif Intell Med 22(2):111–131

    Article  CAS  PubMed  Google Scholar 

  30. Lam H (2008) A framework of interaction costs in information visualization. IEEE Trans Vis Comput Graph 14(6):1149–1156

    Article  PubMed  Google Scholar 

  31. Lhuillier A, Hurter C, Jouffrais C, Barbeau E, Amieva H (2015) Visual analytics for the interpretation of fluency tests during Alzheimer evaluation. In: Proceedings of the 2015 Workshop on Visual Analytics in Healthcare, VAHC, ACM, pp 3:1–3:8

    Google Scholar 

  32. Malik S, Du F, Monroe M, Onukwugha E, Plaisant C, Shneiderman B (2015) Cohort comparison of event sequences with balanced integration of visual analytics and statistics. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI, ACM, pp 38–49

    Google Scholar 

  33. Miksch S, Aigner W (2014) A matter of time: applying a data-users-tasks design triangle to visual analytics of time-oriented data. Comput Graph 38:286–290

    Article  Google Scholar 

  34. Moja L, Kwag KH, Lytras T, Bertizzolo L, Brandt L, Pecoraro V, Rigon G, Vaona A, Ruggiero F, Mangia M, Iorio A, Kunnamo I, Bonovas S (2014) Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis. Am J Public Health 104(12):e12–e22

    Article  PubMed  PubMed Central  Google Scholar 

  35. Monroe M, Lan R, Lee H, Plaisant C, Shneiderman B (2013) Temporal event sequence simplification. IEEE Trans Vis Comput Graph 19(12):2227–2236

    Article  PubMed  Google Scholar 

  36. Monroe M, Lan R, Morales del Olmo J, Shneiderman B, Plaisant C, Millstein J (2013) The challenges of specifying intervals and absences in temporal queries: A graphical language approach. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI, ACM, pp 2349–2358

    Google Scholar 

  37. Munzner T (2014) Visualization analysis and design. AK Peters/CRC, Boca Raton

    Google Scholar 

  38. Niederer C, Rind A, Aigner W (2016) Multi-Device Visualisation Design for Climbing Self-Assessment. In: Proceedings of 20th International Conference on Information Visualisation, iV16, IEEE, forthcoming

    Google Scholar 

  39. Ordonez P, Oates T, Lombardi ME, Hernandez G, Holmes KW, Fackler J, Lehmann CU (2012) Visualization of multivariate time-series data in a neonatal ICU. IBM J Res Dev 56(5):7–1, 7:12

    Article  Google Scholar 

  40. Pagliari C (2015) The changing face of the personal health record: trends and futures in digital empowerment and personalisation. In: Rinaldi G (ed) New perspectives in medical records: meeting the needs of patients and practitioners. Springer (forthcoming)

    Google Scholar 

  41. Peleg M (2013) Computer-interpretable clinical guidelines. J Biomed Inform 46(4):744–763

    Article  PubMed  Google Scholar 

  42. Pike WA, Stasko J, Chang R, O’Connell TA (2009) The science of interaction. Inf Vis 8(4):263–274

    Article  Google Scholar 

  43. Plaisant C, Mushlin R, Snyder A, Li J, Heller D, Shneiderman B (1998) LifeLines: using visualization to enhance navigation and analysis of patient records. In: Proceedings of the AMIA Symposium, pp 76–80

    Google Scholar 

  44. Plaisant C, Miksch S, Gschwandtner T, Malik S (eds) (2014) Proceedings of the IEEE VIS 2014 Workshop on Visualizing Electronic Health Record Data. Available from: http://www.cs.umd.edu/hcil/parisehrvis/. Cited 6 Nov 2015

  45. Pohl M, Wiltner S, Rind A, Aigner W, Miksch S, Turic T, Drexler F (2011) Patient development at a glance: an evaluation of a medical data visualization. In: Campos P, Graham N, Jorge J, Nunes N, Palanque P, Winckler M (eds) Proceedings of the IFIP Human-Computer Interaction – INTERACT 2011, Part IV. Springer, Heidelberg, pp 292–299, LNCS 6949

    Chapter  Google Scholar 

  46. Pohl M, Wiltner S, Miksch S, Aigner W, Rind A (2012) Analysing interactivity in information visualisation. KI - Künstliche Intelligenz 26:151–159

    Article  Google Scholar 

  47. Quaglini S (2007) Compliance with clinical practice guidelines. Stud Health Technol Inf 139:160–179

    Google Scholar 

  48. Reijner H (2008) The development of the horizon graph. In: Bartram L, Stone M, Gromala D (eds) Proceedings of the Vis08 Workshop from Theory to Practice: Design, Vision and Visualization

    Google Scholar 

  49. Rind A, Aigner W, Miksch S, Wiltner S, Pohl M, Drexler F, Neubauer B, Suchy N (2011) Visually exploring multivariate trends in patient cohorts using animated scatter plots. In: Robertson MM (ed) EHAWC 2011 and HCII 2011. Springer, Heidelberg, pp 139–148, LNCS 6779

    Google Scholar 

  50. Rind A, Aigner W, Miksch S, Wiltner S, Pohl M, Turic T, Drexler F (2011) Visual exploration of time-oriented patient data for chronic diseases: design study and evaluation. In: Holzinger A, Simonic K (eds) USAB 2011. Springer, Heidelberg, pp 301–320, LNCS 7058

    Google Scholar 

  51. Rind A, Wang TD, Aigner W, Miksch S, Wongsuphasawat K, Plaisant C, Shneiderman B (2013) Interactive information visualization to explore and query electronic health records. Found Trends Hum Comput Interact 5(3):207–298

    Article  Google Scholar 

  52. Rind A, Aigner W, Wagner M, Miksch S, Lammarsch T (2015) Task Cube: a three-dimensional conceptual space of user tasks in visualization design and evaluation. Information Visualization, Published online before print 27 Dec 2015. doi:10.1177/1473871615621602

  53. Saraiya P, North C, Duca K (2004) An evaluation of microarray visualization tools for biological insight. In: Proceedings of the IEEE Symposium on Information Visualization, INFOVIS, pp 1–8

    Google Scholar 

  54. Shahar Y (1997) A framework for knowledge-based temporal abstraction. Artif Intell 90(1–2):79–133

    Article  Google Scholar 

  55. Spence R (2007) Information visualization: design for interaction, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  56. Thomas JJ, Cook KA (eds) (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE, Los Alamitos, CA, USA

    Google Scholar 

  57. Wagner M (2015) Integrating explicit knowledge in the visual analytics process. In: Doctoral Consortium on Computer Vision, Imaging and Computer Graphics Theory and Applications (DCVISIGRAPP 2015), SCITEPRESS Digital Library, Berlin

    Google Scholar 

  58. Wang TD, Wongsuphasawat K, Plaisant C, Shneiderman B (2011) Extracting insights from electronic health records: case studies, a visual analytics process model, and design recommendations. J Med Syst 35(5):1135–1152

    Article  PubMed  Google Scholar 

  59. Wongsuphasawat K, Gotz D (2012) Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. IEEE Trans Vis Comput Graph 18(12):2659–2668

    Article  CAS  PubMed  Google Scholar 

  60. Wongsuphasawat K, Guerra Gomez JA, Plaisant C,Wang TD, Taieb-Maimon M, Shneiderman B (2011) LifeFlow: visualizing an overview of event sequences. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI, pp 1747–1756

    Google Scholar 

  61. Zhang Z, Wang B, Ahmed F, Ramakrishnan IV, Zhao R, Viccellio A, Mueller K (2013) The five Ws for information visualization with application to healthcare informatics. IEEE Trans Vis Comput Graph 19(11):1895–1910

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Silvia Miksch for valuable inputs and discussions prior to this work. This work was supported by the Austrian Science Fund FWF [grant number P22883].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rind, A., Federico, P., Gschwandtner, T., Aigner, W., Doppler, J., Wagner, M. (2017). Visual Analytics of Electronic Health Records with a Focus on Time. In: Rinaldi, G. (eds) New Perspectives in Medical Records. TELe-Health. Springer, Cham. https://doi.org/10.1007/978-3-319-28661-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28661-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28659-4

  • Online ISBN: 978-3-319-28661-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics