Atlas and Anatomy of SPECT/CT

  • E. Edmund Kim
  • Hyung-Jun Im
  • Dong Soo Lee
  • Keon Wook Kang


The successful application of computer algorithms to radiographic imaging in computed tomography (CT) has led to their use to radionuclide technique and to the advent of single-photon emission computed tomography (SPECT), which offers many advantages over two-dimensional planar images. SPECT permits precise three-dimensional (3D) localization of radiopharmaceutical distribution with the possibility of quantification and also cinematic representation of the organ or pathology imaged. It shows improved image contrast and characterizes the pathologic lesion based on CT findings. The hybrid SPECT/CT is capable of performing anatomic and functional imaging sequentially and improves the accuracy of SPECT interpretation, quantifies radiation dosimetry, and leads to improved patient management. Anatomic CT maps facilitate precise localization of the SPECT findings, allow for exclusion of pathology in sites of physiologic tracer uptakes, and can be used for attenuation and scatter correction of the emission data. SPECT is relatively simple to perform, is widely available, allows multiple time-pointed imaging to better study biological processes, and is less expensive than positron emission tomography (PET). SPECT is also expected to have a better spatial contrast resolution using cadmium-zinc-telluride (CZT) multiple detectors.


SPECT/CT Oncology Anatomy 


  1. 1.
    Langer A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Serv Res. 2010;10:283.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gandhi SJ, Babu S, Subramanyam P, Shanmuga Sundaram P. Tc-99m macro aggregated albumin scintigraphy—indications other than pulmonary embolism: a pictorial essay. Indian J Nucl Med. 2013;28(3):152–62.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Garin E, Rolland Y, Boucher E, Ardisson V, Laffont S, Boudjema K, et al. First experience of hepatic radioembolization using microspheres labelled with yttrium-90 (TheraSphere): practical aspects concerning its implementation. Eur J Nucl Med Mol Imaging. 2010;37(3):453–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Ahn BC. Macroaggregated albumin (MAA) injected in hepatic artery visualized in a recanalized paraumbilical vein. Clin Nucl Med. 2012;37(9):874.CrossRefPubMedGoogle Scholar
  5. 5.
    Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med. 2007;5:15.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Panzuto F, Boninsegna L, Fazio N, Campana D, Pia Brizzi M, Capurso G, et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol. 2011;29(17):2372–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Berglund AS, Hulthen UL, Manhem P, Thorsson O, Wollmer P, Tornquist C. Metaiodobenzylguanidine (MIBG) scintigraphy and computed tomography (CT) in clinical practice. Primary and secondary evaluation for localization of phaeochromocytomas. J Intern Med. 2001;249(3):247–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Lebtahi R, Le Cloirec J, Houzard C, Daou D, Sobhani I, Sassolas G, et al. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med. 2002;43(7):889–95.PubMedGoogle Scholar
  9. 9.
    Zini L, Porpiglia F, Fassnacht M. Contemporary management of adrenocortical carcinoma. Eur Urol. 2011;60(5):1055–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Bushnell DL, Baum RP. Standard imaging techniques for neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40(1):153–62. ix.CrossRefPubMedGoogle Scholar
  12. 12.
    Bombardieri E, Ambrosini V, Aktolun C, Baum RP, Bishof-Delaloye A, Del Vecchio S, et al. 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(7):1441–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Pepe G, Moncayo R, Bombardieri E, Chiti A. Somatostatin receptor SPECT. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S41–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Ilias I, Divgi C, Pacak K. Current role of metaiodobenzylguanidine in the diagnosis of pheochromocytoma and medullary thyroid cancer. Semin Nucl Med. 2011;41(5):364–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van der Harst E, de Herder WW, Bruining HA, Bonjer HJ, de Krijger RR, Lamberts SW, et al. [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in begnign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86(2):685–93.PubMedGoogle Scholar
  16. 16.
    Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2436–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52(4):323–33.PubMedGoogle Scholar
  18. 18.
    Wong KK, Wynn EA, Myles J, Ackermann RJ, Frey KA, Avram AM. Comparison of single time-point [111-In] pentetreotide SPECT/CT with dual time-point imaging of neuroendocrine tumors. Clin Nucl Med. 2011;36(1):25–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Intenzo CM, Jabbour S, Lin HC, Miller JL, Kim SM, Capuzzi DM, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographics. 2007;27(5):1355–69.CrossRefPubMedGoogle Scholar
  20. 20.
    Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.CrossRefPubMedGoogle Scholar
  22. 22.
    Oberg K, Castellano D. Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev. 2011;30 Suppl 1:3–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Rufini V, Treglia G, Castaldi P, Perotti G, Calcagni ML, Corsello SM, et al. Comparison of 123I-MIBG SPECT-CT and 18F-DOPA PET-CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun. 2011;32(7):575–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Warner RR. Enteroendocrine tumors other than carcinoid: a review of clinically significant advances. Gastroenterology. 2005;128(6):1668–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Maroun J, Kocha W, Kvols L, Bjarnason G, Chen E, Germond C, et al. Guidelines for the diagnosis and management of carcinoid tumours. Part 1: The gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Curr Oncol. 2006;13(2):67–76.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM. Bronchopulmonary neuroendocrine tumors. Cancer. 2008;113(1):5–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Daffner KR, Sherman JC, Gonzalez RG, Hasserjian RP. Case records of the Massachusetts General Hospital. Case 35-2008. A 65-year-old man with confusion and memory loss. N Engl J Med. 2008;359(20):2155–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Tan EH, Tan CH. Imaging of gastroenteropancreatic neuroendocrine tumors. World J Clin Oncol. 2011;2(1):28–43.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kaemmerer D, Posorski N, von Eggeling F, Ernst G, Horsch D, Baum RP, et al. The search for the primary tumor in metastasized gastroenteropancreatic neuroendocrine neoplasm. Clin Exp Metastasis. 2014;31(7):817–27.CrossRefPubMedGoogle Scholar
  31. 31.
    McLean TW, Buckley KS. Pediatric genitourinary tumors. Curr Opin Oncol. 2010;22(3):268–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Elaini AB, Shetty SK, Chapman VM, Sahani DV, Boland GW, Sweeney AT, et al. Improved detection and characterization of adrenal disease with PET-CT. Radiographics. 2007;27(3):755–67.CrossRefPubMedGoogle Scholar
  33. 33.
    McNicol AM. Update on tumours of the adrenal cortex, phaeochromocytoma and extra-adrenal paraganglioma. Histopathology. 2011;58(2):155–68.CrossRefPubMedGoogle Scholar
  34. 34.
    Boedeker CC, Neumann HP, Maier W, Bausch B, Schipper J, Ridder GJ. Malignant head and neck paragangliomas in SDHB mutation carriers. Otolaryngol Head Neck Surg. 2007;137(1):126–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang H, Fu HL, Li JN, Zou RJ, Gu ZH, Wu JC. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging. 2009;33(1):49–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Jeong SY, Lee SW, Kim HW, Song BI, Ahn BC, Lee J. Clinical applications of SPECT/CT after first I-131 ablation in patients with differentiated thyroid cancer. Clin Endocrinol (Oxf). 2014;81(3):445–51.CrossRefGoogle Scholar
  37. 37.
    Tharp K, Israel O, Hausmann J, Bettman L, Martin WH, Daitzchman M, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(10):1435–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Yamamoto Y, Nishiyama Y, Monden T, Matsumura Y, Satoh K, Ohkawa M. Clinical usefulness of fusion of 131I SPECT and CT images in patients with differentiated thyroid carcinoma. J Nucl Med. 2003;44(12):1905–10.PubMedGoogle Scholar
  39. 39.
    Griggs WS, Divgi C. Radioiodine imaging and treatment in thyroid disorders. Neuroimaging Clin N Am. 2008;18(3):505–15.CrossRefPubMedGoogle Scholar
  40. 40.
    Moka D, Voth E, Dietlein M, Larena-Avellaneda A, Schicha H. Technetium 99m-MIBI-SPECT: a highly sensitive diagnostic tool for localization of parathyroid adenomas. Surgery. 2000;128(1):29–35.CrossRefPubMedGoogle Scholar
  41. 41.
    Moka D, Voth E, Larena-Avellaneda A, Schicha H. 99m-Tc-MIBI SPECT parathyroid gland scintigraphy for the preoperative localization of small parathyroid gland adenomas. Nuklearmedizin. 1997;36(7):240–4.PubMedGoogle Scholar
  42. 42.
    Gayed IW, Kim EE, Broussard WF, Evans D, Lee J, Broemeling LD, et al. The value of 99mTc-sestamibi SPECT/CT over conventional SPECT in the evaluation of parathyroid adenomas or hyperplasia. J Nucl Med. 2005;46(2):248–52.PubMedGoogle Scholar
  43. 43.
    Im HJ, Lee IK, Paeng JC, Lee KE, Cheon GJ, Kang KW, et al. Functional evaluation of parathyroid adenoma using 99mTc-MIBI parathyroid SPECT/CT: correlation with functional markers and disease severity. Nucl Med Commun. 2014;35(6):649–54.CrossRefPubMedGoogle Scholar
  44. 44.
    Smith JR, Oates ME. Radionuclide imaging of the parathyroid glands: patterns, pearls, and pitfalls. Radiographics. 2004;24(4):1101–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Mariani G, Gulec SA, Rubello D, Boni G, Puccini M, Pelizzo MR, et al. Preoperative localization and radioguided parathyroid surgery. J Nucl Med. 2003;44(9):1443–58.PubMedGoogle Scholar
  46. 46.
    Qureshi NR, Gleeson FV. Imaging of pleural disease. Clin Chest Med. 2006;27(2):193–213.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang ZJ, Reddy GP, Gotway MB, Higgins CB, Jablons DM, Ramaswamy M, et al. Malignant pleural mesothelioma: evaluation with CT, MR imaging, and PET. Radiographics. 2004;24(1):105–19.CrossRefPubMedGoogle Scholar
  48. 48.
    Sugarbaker DJ, Wolf AS. Surgery for malignant pleural mesothelioma. Expert Rev Respir Med. 2010;4(3):363–72.CrossRefPubMedGoogle Scholar
  49. 49.
    Kendi AT, Kara S, Altinok D, Keskil S. Sinonasal ossifying fibroma with fluid-fluid levels on MR images. AJNR Am J Neuroradiol. 2003;24(8):1639–41.PubMedGoogle Scholar
  50. 50.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.PubMedGoogle Scholar
  51. 51.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Fish JD, Grupp SA. Stem cell transplantation for neuroblastoma. Bone Marrow Transplant. 2008;41(2):159–65.CrossRefPubMedGoogle Scholar
  53. 53.
    De Smet AA. How i diagnose meniscal tears on knee MRI. Am J Roentgenol. 2012;199(3):481–99.CrossRefGoogle Scholar
  54. 54.
    Wertman M, Milgrom C, Agar G, Milgrom Y, Yalom N, Finestone AS. Comparison of knee SPECT and MRI in evaluating meniscus injuries in soldiers. Isr Med Assoc J. 2014;16(11):703–6.PubMedGoogle Scholar
  55. 55.
    Palestro CJ, Love C, Schneider R. The evolution of nuclear medicine and the musculoskeletal system. Radiol Clin North Am. 2009;47(3):505–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Van der Wall H, Lee A, Magee M, Frater C, Wijesinghe H, Kannangara S. Radionuclide bone scintigraphy in sports injuries. Semin Nucl Med. 2010;40(1):16–30.CrossRefPubMedGoogle Scholar
  57. 57.
    Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49(1):68–78.CrossRefPubMedGoogle Scholar
  58. 58.
    Senocak O, Degirmenci B, Ozdogan O, Akalin E, Arslan G, Kaner B, et al. Technetium-99m human immunoglobulin scintigraphy in patients with adhesive capsulitis: a correlative study with bone scintigraphy. Ann Nucl Med. 2002;16(4):243–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Huellner MW, Strobel K. Clinical applications of SPECT/CT in imaging the extremities. Eur J Nucl Med Mol Imaging. 2014;41 Suppl 1:S50–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Ryan PJ, Evans PA, Gibson T, Fogelman I. Chronic low back pain: comparison of bone SPECT with radiography and CT. Radiology. 1992;182(3):849–54.CrossRefPubMedGoogle Scholar
  61. 61.
    Sumer J, Schmidt D, Ritt P, Lell M, Forst R, Kuwert T, et al. SPECT/CT in patients with lower back pain after lumbar fusion surgery. Nucl Med Commun. 2013;34(10):964–70.CrossRefPubMedGoogle Scholar
  62. 62.
    DiGiovanni CW, Patel A, Calfee R, Nickisch F. Osteonecrosis in the foot. J Am Acad Orthop Surg. 2007;15(4):208–17.CrossRefPubMedGoogle Scholar
  63. 63.
    Kester RR, Welch JP, Sziklas JP. The 99mTc-labeled RBC scan. A diagnostic method for lower gastrointestinal bleeding. Dis Colon Rectum. 1984;27(1):47–52.CrossRefPubMedGoogle Scholar
  64. 64.
    Bentley DE, Richardson JD. The role of tagged red blood cell imaging in the localization of gastrointestinal bleeding. Arch Surg. 1991;126(7):821–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Howarth DM. The role of nuclear medicine in the detection of acute gastrointestinal bleeding. Semin Nucl Med. 2006;36(2):133–46.CrossRefPubMedGoogle Scholar
  66. 66.
    Leder KS, Barlam TF. A case of paraspinal abscess and diskitis due to Peptostreptococcus micros. Clin Infect Dis. 2000;30(3):622–3.CrossRefPubMedGoogle Scholar
  67. 67.
    Ibrahim NA, Fadeyibi IO. Ectopic thyroid: etiology, pathology and management. Hormones (Athens). 2011;10(4):261–9.CrossRefGoogle Scholar
  68. 68.
    Hijaz TA, Cento EA, Walker MT. Imaging of head trauma. Radiol Clin North Am. 2011;49(1):81–103.CrossRefPubMedGoogle Scholar
  69. 69.
    Marmarou A, Young HF, Aygok GA. Estimated incidence of normal pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. Neurosurg Focus. 2007;22(4):E1.CrossRefGoogle Scholar
  70. 70.
    Joffe HV, Goldhaber SZ. Upper-extremity deep vein thrombosis. Circulation. 2002;106(14):1874–80.CrossRefPubMedGoogle Scholar
  71. 71.
    Leijte JA, Valdes Olmos RA, Nieweg OE, Horenblas S. Anatomical mapping of lymphatic drainage in penile carcinoma with SPECT-CT: implications for the extent of inguinal lymph node dissection. Eur Urol. 2008;54(4):885–90.CrossRefPubMedGoogle Scholar
  72. 72.
    Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SP, et al. Combined analysis of phase III trials evaluating [(9)(9)mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol. 2013;20(2):680–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Hartman TE. Radiologic evaluation of the solitary pulmonary nodule. Radiol Clin North Am. 2005;43(3):459–65.CrossRefPubMedGoogle Scholar
  74. 74.
    Kumar R, Halanaik D, Malhotra A. Clinical applications of positron emission tomography-computed tomography in oncology. Indian J Cancer. 2010;47(2):100–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.CrossRefPubMedGoogle Scholar
  76. 76.
    Kligerman SJ, Groshong S, Brown KK, Lynch DA. Nonspecific interstitial pneumonia: radiologic, clinical, and pathologic considerations. Radiographics. 2009;29(1):73–87.CrossRefPubMedGoogle Scholar
  77. 77.
    Duran-Mendicuti A, Sodickson A. Imaging evaluation of the pregnant patient with suspected pulmonary embolism. Int J Obstet Anesth. 2011;20(1):51–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Kim SH, Lee JM, Han JK, Lee JY, Kim KW, Cho KC, et al. Intrapancreatic accessory spleen: findings on MR Imaging, CT, US and scintigraphy, and the pathologic analysis. Korean J Radiol. 2008;9(2):162–74.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Front D, Israel O, Groshar D, Weininger J. Technetium-99m-labeled red blood cell imaging. Semin Nucl Med. 1984;14(3):226–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Sundin A. Imaging of adrenal masses with emphasis on adrenocortical tumors. Theranostics. 2012;2(5):516–22.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • E. Edmund Kim
    • 1
  • Hyung-Jun Im
    • 2
  • Dong Soo Lee
    • 1
    • 3
  • Keon Wook Kang
    • 4
  1. 1.Department of Radiological SciencesSchool of Medicine, University of California at IrvineIrvineUSA
  2. 2.Department of Nuclear MedicineSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Nuclear Medicine and Department of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
  4. 4.Department of Nuclear Medicine and Cancer Research InstituteSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations