Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter a short introduction into the field of single particle imaging with free-electron lasers is given. The theoretical basics of the key processes are introduced, in particular elastic light scattering and Mie theory, the response of atoms to X-ray radiation, and the interaction of intense short-wavelength pulses with clusters are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. For his pioneering work in femtosecond spectroscopy, A. Zewail received the Nobel prize in physics in 1999

    Google Scholar 

  2. A.H. Zewail, Femtochemistry. past, present, and future. Pure Appl. Chem. 72(12), 2219–2231 (2000)

    Article  Google Scholar 

  3. P.B. Corkum, F. Krausz, Attosecond science. Nat. Phys. 3, 381–387 (2007)

    Google Scholar 

  4. For the discovery of X rays, W.C. Röntgen was awarded the first Nobel prize in physics in 1901

    Google Scholar 

  5. Photoelectron spectroscopy was developed by K. Siegbahn who was awarded the Nobel prize in physics in 1981

    Google Scholar 

  6. M. Laue was awarded the Nobel prize in physics in 1914 for the discovery of X-ray diffraction from crystals

    Google Scholar 

  7. W.L. Bragg, received the Nobel prize in physics in 1915 for developing X-ray diffraction on crystals as a method for structure analysis

    Google Scholar 

  8. M. Perutz, J. Kendrew, were awarded the Nobel prize in chemistry in 1962 for determining the structure of hemoglobin and myoglobin

    Google Scholar 

  9. The Nobel prize in chemistry in 1964 was given to D.C. Hodgkin for determining the structure of penicillin

    Google Scholar 

  10. List of nobel prizes for structural determination of molecules. http://proteopedia.org/wiki/index.php/Nobel_Prizes_for_3D_Molecular_Structure (2013)

  11. G.J. Palenik, W.P. Jensen, I.H. Suh, The history of molecular structure determination viewed through the Nobel prizes. J. Chem. Educ. 80(7), 753–761 (2003)

    Article  Google Scholar 

  12. L. Slabinski, L. Jaroszewski, The challenge of protein structure determination—lessons from structural genomics. Protein Sci. 2472–2482 (2007)

    Google Scholar 

  13. J. Feldhaus, J. Arthur, J. Hastings, X-ray free-electron lasers. J. Phys. B 38, 799–819 (2005)

    Article  ADS  Google Scholar 

  14. J.R. Schneider, FLASH—from accelerator test facility to the first single-pass soft x-ray free-electron laser. J. Phys. B 43, 194001 (2010)

    Article  ADS  Google Scholar 

  15. P. Emma et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4(9), 641–647 (2010)

    Article  ADS  Google Scholar 

  16. A. Doerr, Diffraction before destruction. Nat. Methods 8, 283 (2011)

    Article  Google Scholar 

  17. R. Neutze et al., Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797), 752–7 (2000)

    Article  ADS  Google Scholar 

  18. C. Bostedt et al., Experiments at FLASH. Nucl. Instr. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 601(1–2), 108–122 (2009)

    Article  ADS  Google Scholar 

  19. C. Bostedt et al., Ultra-fast and ultra-intense x-ray sciences: First results from the Linac Coherent Light Source free-electron laser. Submitt. J. Phys. B (2013)

    Google Scholar 

  20. M. Bogan et al., Single particle X-ray diffractive imaging. Nano Lett. 8(1), 310–316 (2008)

    Article  ADS  Google Scholar 

  21. C. Bostedt et al., Clusters in intense FLASH pulses: ultrafast ionization dynamics and electron emission studied with spectroscopic and scattering techniques. J. Phys. B 43(19), 194011 (2010)

    Article  ADS  Google Scholar 

  22. H. Chapman et al., Femtosecond X-ray protein nanocrystallography. Nature 470(7332), 73–77 (2011)

    Article  ADS  Google Scholar 

  23. D. Rupp et al., Identification of twinned gas phase clusters by single shot scattering with intense soft X-ray pulses. New J. Phys. 14, 055016 (2012)

    Article  ADS  Google Scholar 

  24. M. Seibert et al., Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(7332), 78–81 (2011)

    Article  ADS  Google Scholar 

  25. M. Bergh et al., Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q. Rev. Biophys. 41(3–4), 181–204 (2008)

    Article  Google Scholar 

  26. S. Son, L. Young, R. Santra, Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A 83(3), 1–11 (2011)

    Article  Google Scholar 

  27. B. Ziaja et al., Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J. Phys. 14(11), 115015 (2012)

    Article  ADS  Google Scholar 

  28. U. Saalmann, C. Siedschlag, J.M. Rost, Mechanisms of cluster ionization in strong laser pulses. J. Phys. B 39(4), R39–R77 (2006)

    Article  ADS  Google Scholar 

  29. S. Schorb et al., Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond X-ray free-electron-laser pulses. Phys. Rev. Lett. 108, 233401 (2012)

    Article  ADS  Google Scholar 

  30. M. Hoener et al., Charge recombination in soft x-ray produced nanoplasmas. J. Phys. B 41, 181001 (2008)

    Article  ADS  Google Scholar 

  31. C. Bostedt et al., Ultrafast x-ray scattering of xenon nanoparticles: Imaging transient states of matter. Phys. Rev. Lett. 108, 093401 (2012)

    Article  ADS  Google Scholar 

  32. O.F. Hagena, Nucleation and growth of clusters in expanding nozzle flows. Surf. Sci. 106, 101–116 (1981)

    Article  ADS  Google Scholar 

  33. S. Hau-Riege, High-Intensity X-rays—Interaction with Matter (Wiley, New York, 2011)

    Google Scholar 

  34. D. Attwood, Soft X-ray and extreme ultraviolet radiation. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  35. C.F. Bohren, D. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)

    Google Scholar 

  36. J.C. Maxwell, A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc. Lond. (1865)

    Google Scholar 

  37. M. Born, E. Wolf, Principles of Optics, 7th edn (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  38. K.E. Peiponen et al., Kramers-Kronig relations and sum rules of negative refractive index media. Eur. Phys. J. B 41(1), 61–65 (2004)

    Article  ADS  Google Scholar 

  39. J.J. Thomson, Conduction of electricity through gases (Cambridge University Press, Cambridge, 1906)

    Google Scholar 

  40. J. Strutt, On the scattering of light by small particles. Phil. Mag. 41, 447–454 (1871)

    Google Scholar 

  41. E. Hecht, Optik, 4 edn. (Oldenbourg Verlag, 2005)

    Google Scholar 

  42. G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik (1908)

    Google Scholar 

  43. C. Peltz et al., Fully microscopic analysis of laser-driven finite plasmas using the example of clusters. New J. Phys. 14(6), 065011 (2012)

    Article  ADS  Google Scholar 

  44. M. Kerker, The scattering of light and other electromagnetic radiation (Academic Press, New York, 1969)

    Google Scholar 

  45. L. Liu et al., Improved algorithm of light scattering by a coated sphere. China Particuol. 5, 230–236 (2007)

    Article  Google Scholar 

  46. A.L. Aden, M. Kerker, Scattering of electromagnetic waves from two concentric spheres. J. Appl. Phys. 22(10), 1242 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. R.A. Meyer, A. Brunsting, Light scattering from nucleated biological cells. Biophys. J. 15, 191–203 (1975)

    Article  Google Scholar 

  48. www.scattport.org/files/jianqi_shen/. Web link for the code package by Jianqi Shen for coated spheres (2012)

  49. L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  50. A.A. Sorokin et al., Photoelectric effect at ultrahigh intensities. Phys. Rev. Lett. 99(21), 213002 (2007)

    Article  ADS  Google Scholar 

  51. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantenmechanik 2 (deGruyter, 1999)

    Google Scholar 

  52. M. Richter et al., Multiphoton ionization of atoms with soft X-ray pulses. J. Phys. B 43(19), 194005 (2010)

    Article  ADS  Google Scholar 

  53. V. Richardson et al., Two-photon inner-shell ionization in the extreme ultraviolet. Phys. Rev. Lett. 105(1), 013001 (2010)

    Article  ADS  Google Scholar 

  54. L. Young et al., Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466(7302), 56–61 (2010)

    Article  ADS  Google Scholar 

  55. N. Berrah et al., Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs). J. Mod. Opt. 57(12), 37–41 (2010)

    Article  Google Scholar 

  56. G. Doumy et al., Nonlinear atomic response to intense ultrashort X-rays. Phys. Rev. Lett. 106(8), 083002 (2011)

    Article  ADS  Google Scholar 

  57. B. Rudek et al., Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nat. Photonics (2012)

    Google Scholar 

  58. T. Fennel et al., Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82(2), 1793–1842 (2010)

    Article  ADS  Google Scholar 

  59. http://henke.lbl.gov/optical_constants/. Online data base for X-ray optical constants

  60. J.B. West, Photoionization of atomic ions. J. Phys. B 45, (2001)

    Google Scholar 

  61. D.L. Ederer, M. Manalis, Photoabsorption of the 4d electrons in xenon. J. Opt. Soc. Am. 65(6), 634–637 (1975)

    Article  ADS  Google Scholar 

  62. Y. Itoh, A. Ito, M. Kitajima, Absolute photoionization cross section measurements of Xe\(^+\) ions in the 4d threshold energy region. Journal of Physics B 4075(01), 3493–3499 (2001)

    Article  ADS  Google Scholar 

  63. P. Andersen et al., Absolute cross sections for the photoionization of 4d electrons in Xe\(^+\) and Xe\(^{2+}\) ions. J. Phys. B 4075(01), 2009–2019 (2009)

    Google Scholar 

  64. E.D. Emmons et al., Photoionization and electron-impact ionization of Xe\(^{3+}\). Phys. Rev. A, 71(042704) (2005)

    Google Scholar 

  65. A. Aguilar et al., Absolute photoionization cross sections for Xe\(^{4+}\), Xe\(^{5+}\), and Xe\(^{6+}\) near 13.5 nm: Experiment and theory. Phys. Rev. A, 73(3), 1–10 (2006)

    Google Scholar 

  66. J. Bizau et al., Photoionization of highly charged ions using an ECR ion source and undulator radiation. Phys. Rev. Lett. 84(3), 435–438 (2000)

    Article  ADS  Google Scholar 

  67. J.W. Cooper, Interaction of maxima in the absorption of soft X-rays. Phys. Rev. Lett. 1(25), 4–6 (1964)

    Google Scholar 

  68. M.G. Mayer, Rare-earth and transuranic elements. Phys. Rev. 1–4 (1941)

    Google Scholar 

  69. K.T. Cheng, W.R. Johnson, Orbital collapse and the photoionization of the inner \(4d\) shells for Xe-like ions. Phys. Rev. A, 28(5) (1983)

    Google Scholar 

  70. T. Luhmann et al., Final ion-charge resolving electron spectroscopy for the investigation of atomic photoionization processes: Xe in the region of the \(4d-\epsilon f\) resonance. Phys. Rev. A 57(1), 282–291 (1998)

    Article  ADS  Google Scholar 

  71. H. Haberland in Bergmann Schäfer. Lehrbuch der Experimentalphysik 5. Gase, Nanosysteme, Flüssigkeiten. deGruyter (2009)

    Google Scholar 

  72. J. Posthumus, Molecules and clusters in intense laser fields (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  73. V.P. Krainov, M.B. Smirnov, Cluster beams in the super-intense femtosecond laser pulse. Phys. Rep. 370(3), 237–331 (2002)

    Article  ADS  Google Scholar 

  74. U. Saalmann, Cluster nanoplasmas in strong FLASH pulses: formation, excitation and relaxation. J. Phys. B 43(19), 194012 (2010)

    Article  ADS  Google Scholar 

  75. P.G. Reinhard, E. Suraud, Introduction to cluster dynamics (Wiley, New York, 2004)

    Google Scholar 

  76. H. Wabnitz et al., Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420(6915), 482–5 (2002)

    Article  ADS  Google Scholar 

  77. I. Last, J. Jortner, Quasiresonance ionization of large multicharged clusters in a strong laser field. Phys. Rev. A 60(3), 2215–2221 (1999)

    Article  ADS  Google Scholar 

  78. M. Arbeiter, T. Fennel, Rare-gas clusters in intense VUV, XUV and soft x-ray pulses: signatures of the transition from nanoplasma-driven cluster expansion to Coulomb explosion in ion and electron spectra. New J. Phys. 13(5), 053022 (2011)

    Article  ADS  Google Scholar 

  79. C. Bostedt et al., Fast electrons from multi-electron dynamics in xenon clusters induced by inner-shell ionization. New J. Phys. 12(8), 083004 (2010)

    Article  ADS  Google Scholar 

  80. C. Jungreuthmayer et al., Intense VUV laser cluster interaction in the strong coupling regime. J. Phys. B 38(16), 3029–3036 (2005)

    Article  ADS  Google Scholar 

  81. T. Fennel, L. Ramunno, T. Brabec, Highly charged ions from laser-cluster interactions: Local-field-enhanced impact ionization and frustrated electron-ion recombination. Phys. Rev. Lett. 99(23), 1–4 (2007)

    Article  Google Scholar 

  82. A. Gets, V. Krainov, The ionization potentials of atomic ions in laser-irradiated Ar, Kr and Xe clusters. J. Phys. B 39(7), 1787–1795 (2006)

    Article  ADS  Google Scholar 

  83. C. Deiss et al., Laser-cluster interaction: X-ray production by short laser pulses. Phys. Rev. Lett. 96, 013202 (2006)

    Article  ADS  Google Scholar 

  84. J. Passig et al., Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy. New J. Phys. 14(8), 085020 (2012)

    Article  ADS  Google Scholar 

  85. L. Köller et al., Plasmon-enhanced multi-ionization of small metal clusters in strong femtosecond laser fields. Phys. Rev. Lett. 82(19), 3783–3786 (1999)

    Article  ADS  Google Scholar 

  86. D. Semkat, R. Redmer, T. Bornath, Collisional absorption in aluminum. Phys. Rev. E 73(6), 066406 (2006)

    Article  ADS  Google Scholar 

  87. T. Ditmire et al., Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 57(1), 369–382 (1998)

    Article  ADS  Google Scholar 

  88. H. Milchberg, S. McNaught, E. Parra, Plasma hydrodynamics of the intense laser-cluster interaction. Phys. Rev. E 64(5), 056402 (2001)

    Article  ADS  Google Scholar 

  89. M. Lezius et al., Explosion dynamics of rare gas clusters in strong laser fields. Phys. Rev. Lett. 62(2), 261–265 (2000)

    Google Scholar 

  90. T. Ditmire et al., Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53(5), 3379–3402 (1996)

    Article  ADS  Google Scholar 

  91. T. Ditmire et al., High intensity laser absorption by gases of atomic clusters. Phys. Rev. Lett. 78(16), 3121–3124 (1997)

    Article  ADS  Google Scholar 

  92. S. Sakabe et al., Skinning of argon clusters by Coulomb explosion induced with an intense femtosecond laser pulse. Phys. Rev. A 74(4), 043205 (2006)

    Article  ADS  Google Scholar 

  93. H. Thomas et al., Shell explosion and core expansion of xenon clusters irradiated with femtosecond soft X-ray pulses. J. Phys. B 42, 134018 (2009)

    Article  ADS  Google Scholar 

  94. K. Ishikawa, T. Blenski, Explosion dynamics of rare-gas clusters in intense laser field. Phys. Rev. A 62, 063204 (2000)

    Article  ADS  Google Scholar 

  95. M.R. Islam, U. Saalmann, J.M. Rost, Kinetic energy of ions after Coulomb explosion of clusters induced by an intense laser pulse. Phys. Rev. A 73, 041201 (2006)

    Article  ADS  Google Scholar 

  96. T. Laarmann et al., Emission of thermally activated electrons from rare gas clusters irradiated with intense VUV light pulses from a free electron laser. Phys. Rev. Lett. 95, 063402 (2005)

    Article  ADS  Google Scholar 

  97. R. Santra, C. Greene, Xenon clusters in intense VUV laser fields. Phys. Rev. Lett. 91(23), 1–4 (2003)

    Article  Google Scholar 

  98. D. Bauer, Small rare gas clusters in laser fields: Ionization and absorption at long and short laser wavelengths. J. Phys. B 37(15), 3085–3101 (2004)

    Article  ADS  Google Scholar 

  99. C. Siedschlag, J.M. Rost, Small rare-gas clusters in soft X-ray pulses. Phys. Rev. Lett. 93(4), 2–5 (2004)

    Article  Google Scholar 

  100. B. Ziaja et al., Energetics, ionization, and expansion dynamics of atomic clusters irradiated with short intense vacuum-ultraviolet pulses. Phys. Rev. Lett. 102(20), 205002 (2009)

    Article  ADS  Google Scholar 

  101. C. Bostedt et al., Multistep ionization of argon clusters in intense femtosecond extreme ultraviolet pulses. Phys. Rev. Lett. 100(13), 133401 (2008)

    Article  ADS  Google Scholar 

  102. M. Arbeiter, T. Fennel, Ionization heating in rare-gas clusters under intense XUV laser pulses. Phys. Rev. A 82(1), 1–7 (2010)

    Article  Google Scholar 

  103. T. Gorkhover et al., Nanoplasma dynamics of single large xenon clusters irradiated with superintense X-ray pulses from the Linac Coherent Light Source Free-Electron Laser. Phys. Rev. Lett. 108, 245005 (2012)

    Article  ADS  Google Scholar 

  104. S. Schorb, Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond X-ray free-electron laser pulses. Ph.D. thesis (TU Berlin, October, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rupp .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rupp, D. (2016). Theoretical Concepts for Single Cluster Imaging. In: Ionization and Plasma Dynamics of Single Large Xenon Clusters in Superintense XUV Pulses. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28649-5_1

Download citation

Publish with us

Policies and ethics