Skip to main content

Practical Application: Tailoring Fast Ionic Diffusion

  • Chapter
  • First Online:
Atomic Diffusion in Glasses Studied with Coherent X-Rays

Part of the book series: Springer Theses ((Springer Theses))

  • 373 Accesses

Abstract

We have seen that aXPCS can yield insight into glassy dynamics on the atomic scale. The next goal is to utilise aXPCS to further the understanding of a material class of great practical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baranovskii, S. D., & Cordes, H. (1999). On the conduction mechanism in ionic glasses. Journal of Chemical Physics, 111(16), 7546.

    Article  ADS  Google Scholar 

  • Berkemeier, F., Voss, S., Imre, Á. W., & Mehrer, H. (2005). Molar volume, glass-transition temperature, and ionic conductivity of Na- and Rb-borate glasses in comparison with mixed Na-Rb borate glasses. Journal of Non-Crystalline Solids, 351(52–54), 3816–3825.

    Article  ADS  Google Scholar 

  • Bunde, A., Ingram, M. D., & Maass, P. (1994). The dynamic structure model for ion transport in glasses. Journal of Non-Crystalline Solids, 172–174, 1222–1236.

    Article  Google Scholar 

  • Button, D. P., Tandon, R., King, C., Veléz, M. H., Tuller, H. L., & Uhlmann, D. R. (1982). Insights into the structure of alkali borate glasses. Journal of Non-Crystalline Solids, 49(1–3), 129–142.

    Article  ADS  Google Scholar 

  • Cormier, L., Calas, G., & Beuneu, B. (2007). Structure of single and mixed alkali Li-Rb borate glasses by neutron diffraction. Journal of Non-Crystalline Solids, 353(18–21), 1779–1784.

    Article  ADS  Google Scholar 

  • Doremus, R. H. (1994). Glass science. New York: Wiley-Interscience.

    Google Scholar 

  • Dyre, J. C. (2003). Is there a ‘native’ band gap in ion conducting glasses? Journal of Non-Crystalline Solids, 324(1–2), 192–195.

    Article  ADS  Google Scholar 

  • Dyre, J. C., Maass, P., Roling, B., & Sidebottom, D. L. (2009). Fundamental questions relating to ion conduction in disordered solids. Reports on Progress in Physics, 72(4), 046501.

    Article  ADS  Google Scholar 

  • Elliott, R. J., Perondi, L., & Barrio, R. A. (1994). Ionic conduction in \((1-x)\)B\(_2\)O\(_3\)+\(x\)Li\(_2\)O. Journal of Non-Crystalline Solids, 168(1–2), 167–178.

    Article  ADS  Google Scholar 

  • Ferlat, G., Charpentier, T., Seitsonen, A., Takada, A., Lazzeri, M., Cormier, L., et al. (2008). Boroxol rings in liquid and vitreous B\(_2\)O\(_3\) from first principles. Physical Review Letters, 101(6), 065504.

    Article  ADS  Google Scholar 

  • Funke, K. (1993). Jump relaxation in solid electrolytes. Progress in Solid State Chemistry, 22(2), 111–195.

    Article  Google Scholar 

  • Funke, K., Banhatti, R. D., Laughman, D. M., Badr, L. G., Mutke, M., Santic, A., et al. (2010). First and second universalities: Expeditions towards and beyond. Zeitschrift für Physikalische Chemie, 224(10–12), 1891–1950.

    Google Scholar 

  • Goubeau, J., & Keller, H. (1953). Raman-Spektren und Struktur von Boroxol-Verbindungen. Zeitschrift für Anorganische und Allgemeine Chemie, 272(5–6), 303–312.

    Google Scholar 

  • Habasaki, J., & Ngai, K. L. (2006). Molecular dynamics simulation of ion dynamics in glassy ionic conductors: Evidence of the primitive ion hopping process. Journal of Non-Crystalline Solids, 352(42–49), 5170–5177.

    Article  ADS  Google Scholar 

  • Hannon, A. C., Grimley, D. I., Hulme, R. A., Wright, A. C., & Sinclair, R. N. (1994). Boroxol groups in vitreous boron oxide: New evidence from neutron diffraction and inelastic neutron scattering studies. Journal of Non-Crystalline Solids, 177, 299–316.

    Article  ADS  Google Scholar 

  • Imre, Á. W., Berkemeier, F., Mehrer, H., Gao, Y., Cramer, C., & Ingram, M. D. (2008). Transition from a single-ion to a collective diffusion mechanism in alkali borate glasses. Journal of Non-Crystalline Solids, 354(2–9), 328–332.

    Article  ADS  Google Scholar 

  • Ingram, M. D. (1999). Towards a theory of ion transport in glass. Physica A, 266(1–4), 390–399.

    Article  ADS  Google Scholar 

  • Inoue, H., Aoki, N., & Yasui, I. (1987). Molecular dynamics simulation of the structure of borate glasses. Journal of the American Ceramic Society, 70(9), 622–627.

    Article  Google Scholar 

  • Jellison, G. E., Panek, L. W., Bray, P. J., & Rouse, G. B. (1977). Determinations of structure and bonding in vitreous B\(_2\)O\(_3\) by means of B\(^{10}\), B\(^{11}\), and O\(^{17}\) NMR. Journal of Chemical Physics, 66(2), 802.

    Article  ADS  Google Scholar 

  • Johnson, P. A. V., Wright, A. C., & Sinclair, R. N. (1982). A neutron diffraction investigation of the structure of vitreous boron trioxide. Journal of Non-Crystalline Solids, 50(3), 281–311.

    Article  ADS  Google Scholar 

  • Jund, P., Kob, W., & Jullien, R. (2001). Channel diffusion of sodium in a silicate glass. Physical Review B, 64(13), 134303.

    Article  ADS  Google Scholar 

  • Kamitsos, E. (1998). Alkali sites in glass. Solid State Ionics, 105(1–4), 75–85.

    Article  Google Scholar 

  • Kamitsos, E. I., Patsis, A. P., Karakassides, M. A., & Chryssikos, G. D. (1990). Infrared reflectance spectra of lithium borate glasses. Journal of Non-Crystalline Solids, 126(1–2), 52–67.

    Article  ADS  Google Scholar 

  • Kanert, O., Dieckhöfer, J., & Küchler, R. (1996). Recent progress in the area of NMR characterization of ionic transport and relaxation in glasses. Journal of Non-Crystalline Solids, 203, 252–261.

    Article  ADS  Google Scholar 

  • Kelly, J. E, I. I. I., Cordaro, J. F., & Tomozawa, M. (1980). Correlation effects on alkali ion diffusion in binary alkali oxide glasses. Journal of Non-Crystalline Solids, 41(1), 47–55.

    Article  ADS  Google Scholar 

  • Knödler, D., & Dieterich, W. (1992). Lattice-gas models of dispersive transport in disordered materials. Physica A, 191(1–4), 426–432.

    Article  ADS  Google Scholar 

  • Krogh-Moe, J. (1969). The structure of vitreous and liquid boron oxide. Journal of Non-Crystalline Solids, 1(4), 269–284.

    Article  ADS  Google Scholar 

  • Kunow, M., & Heuer, A. (2005). Coupling of ion and network dynamics in lithium silicate glasses: A computer study. Physical Chemistry Chemical Physics, 7(10), 2131.

    Article  Google Scholar 

  • Lammert, H., & Heuer, A. (2010). Simplified Interpretation of transport in disordered inorganic ion conductors from vacancy dynamics. Physical Review Letters, 104(12), 125901.

    Article  ADS  Google Scholar 

  • Maass, P., Bunde, A., & Ingram, M. (1992). Ion transport anomalies in glasses. Physical Review Letters, 68(20), 3064–3067.

    Article  ADS  Google Scholar 

  • Mehrer, H. (2007). Diffusion in solids. Berlin: Springer.

    Book  Google Scholar 

  • Meyer, A., Horbach, J., Kob, W., Kargl, F., & Schober, H. (2004). Channel formation and intermediate range order in sodium silicate melts and glasses. Physical Review Letters, 93(2), 027801.

    Article  ADS  Google Scholar 

  • Micoulaut, M., Kerner, R., & dos Santos-Loff, D. M. (1995). Statistical modelling of structural and thermodynamical properties of vitreous B\(_2\)O\(_3\). Journal of Physics: Condensed Matter, 7(42), 8035–8052.

    ADS  Google Scholar 

  • Mozzi, R. L., & Warren, B. E. (1970). The structure of vitreous boron oxide. Journal of Applied Crystallography, 3(4), 251–257.

    Article  Google Scholar 

  • Ngai, K. L. (1993). Difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses. Journal of Chemical Physics, 98(8), 6424.

    Article  ADS  Google Scholar 

  • Ngai, K. L. (1996). A review of critical experimental facts in electrical relaxation and ionic diffusion in ionically conducting glasses and melts. Journal of Non-Crystalline Solids, 203, 232–245.

    Article  ADS  Google Scholar 

  • Roling, B., Happe, A., Funke, K., & Ingram, M. (1997). Carrier concentrations and relaxation spectroscopy: New information from scaling properties of conductivity spectra in ionically conducting glasses. Physical Review Letters, 78(11), 2160–2163.

    Article  ADS  Google Scholar 

  • Ruta, B., Baldi, G., Chushkin, Y., Rufflé, B., Cristofolini, L., Fontana, A., et al. (2014). Revealing the fast atomic motion of network glasses. Nature Communications, 5, 3939.

    Article  ADS  Google Scholar 

  • Sen, S., & Stebbins, J. F. (1997). Na-ion transport in borate and germanate glasses and liquids: A \(^{23}\)Na and \(^{11}\)B NMR spin-lattice-relaxation study. Physical Review B, 55(6), 3512–3519.

    Article  ADS  Google Scholar 

  • Shelby, J. E. (2005). Introduction to glass science and technology. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Sidebottom, D., Green, P., & Brow, R. (1995). Two contributions to the ac conductivity of alkali oxide glasses. Physical Review Letters, 74(25), 5068–5071.

    Article  ADS  Google Scholar 

  • Soper, A. (2005). Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement. Physical Review B, 72(10), 104204.

    Article  ADS  Google Scholar 

  • Soules, T. F., & Varshneya, A. K. (1981). Molecular dynamic calculations of a sodium borosilicate glass structure. The Journal of the American Ceramic Society, 64(3), 145–150.

    Article  Google Scholar 

  • Takada, A., Catlow, C. R. A., & Price, G. D. (1995). Computer modelling of B\(_2\)O\(_3\). II. Molecular dynamics simulations of vitreous structures. Journal of Physics: Condensed Matter, 7(46), 8693–8722.

    ADS  Google Scholar 

  • Verhoef, A. H., & den Hartog, H. W. (1995). Structure and dynamics of alkali borate glasses: a molecular dynamics study. Journal of Non-Crystalline Solids, 182(3), 235–247.

    Article  ADS  Google Scholar 

  • Voss, S., Imre, Á. W., & Mehrer, H. (2004). Mixed-alkali effect in Na-Rb borate glasses: A tracer diffusion and electrical conductivity study. Physical Chemistry Chemical Physics, 6(13), 3669.

    Article  Google Scholar 

  • Xu, Q., Kawamura, K., & Yokokawa, T. (1988). Molecular dynamics calculations for boron oxide and sodium borate glasses. Journal of Non-Crystalline Solids, 104(2–3), 261–272.

    Article  ADS  Google Scholar 

  • Zachariasen, W. H. (1932). The atomic arrangement in glass. Journal of the American Chemical Society, 54(10), 3841–3851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ross .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ross, M. (2016). Practical Application: Tailoring Fast Ionic Diffusion. In: Atomic Diffusion in Glasses Studied with Coherent X-Rays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28646-4_6

Download citation

Publish with us

Policies and ethics