Skip to main content

Life on the Edge: Determinants of Selective Neuronal Vulnerability in Parkinson’s Disease

  • Chapter
  • First Online:

Abstract

One of the defining features of Parkinson’s disease (PD) is its sparsely distributed pathology. This chapter explores the hypothesis that this selective vulnerability can be traced back to an unusual neuronal phenotype. This phenotype is best exemplified by dopaminergic neurons in the substantia nigra pars compacta (SNc), whose loss is responsible for the cardinal motor symptoms of PD. These neurons have extraordinarily long and branched axons, sustained autonomous spiking, and elevated levels of cytosolic Ca2+, in addition to a chemically reactive neurotransmitter. This combination of features leads to sustained elevations in mitochondrial oxidative stress, possibly as a consequence of the reliance on feed-forward control of mitochondrial metabolism, and to increased susceptibility to alpha-synuclein (aSYN) aggregation. These derivative features could increase the impact of aging, genetic mutations, and environmental toxins linked to increased risk of PD, providing a unifying theory of PD pathogenesis. Although most of these traits are not amenable to therapeutic manipulation, Ca2+ loading is indeed, because it stems from opening of Cav1 (L-type) Ca2+ channels – channels that are antagonized by dihydropyridine drugs long used for the treatment of hypertension. Epidemiological studies have revealed that the use of dihydropyridines is associated with a reduced risk of developing PD. As a consequence, a large phase III clinical trial is underway in North America to determine if one of the dihydropyridines (isradipine) can slow PD progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Lau LM, Giesbergen PC, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MM. Incidence of Parkinsonism and Parkinson disease in a general population: the Rotterdam study. Neurology. 2004;63(7):1240–4.

    Article  PubMed  Google Scholar 

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–6.

    Article  CAS  PubMed  Google Scholar 

  3. Lin MK, Farrer MJ. Genetics and genomics of Parkinson’s disease. Genome Med. 2014;6(6):48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bras JM, Singleton A. Genetic susceptibility in Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):597–603.

    Article  CAS  PubMed  Google Scholar 

  5. Cookson MR, Bandmann O. Parkinson’s disease: insights from pathways. Hum Mol Genet. 2010;19(R1):R21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mullin S, Schapira A. The genetics of Parkinson’s disease. Br Med Bull. 2015;114(1):39–52. Epub 2015/05/23.

    Article  PubMed  Google Scholar 

  7. Papapetropoulos S, Shehadeh L, McCorquodale D. Optimizing human post-mortem brain tissue gene expression profiling in Parkinson’s disease and other neurodegenerative disorders: from target “fishing” to translational breakthroughs. J Neurosci Res. 2007;85(14):3013–24.

    Article  CAS  PubMed  Google Scholar 

  8. Lewis PA, Cookson MR. Gene expression in the Parkinson’s disease brain. Brain Res Bull. 2012;88(4):302–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanner CM. Advances in environmental epidemiology. Mov Disord. 2010;25 Suppl 1:S58–62. Epub 2010/02/27.

    Article  PubMed  Google Scholar 

  10. Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, et al. Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis. 2006;22(2):404–20.

    Article  CAS  PubMed  Google Scholar 

  11. Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, et al. Time to redefine PD? Introductory statement of the MDS task force on the definition of Parkinson’s disease. Mov Disord. 2014;29(4):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Halliday G, Lees A, Stern M. Milestones in Parkinson’s disease – clinical and pathologic features. Mov Disord. 2011;26(6):1015–21. Epub 2011/06/01.

    Article  PubMed  Google Scholar 

  13. Halliday G, McCann H, Shepherd C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson’s disease? Expert Rev Neurother. 2012;12(6):673–86.

    Article  CAS  PubMed  Google Scholar 

  14. Kirik D, Bjorklund A. Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trend Neurosci. 2003;26(7):386–92.

    Article  CAS  PubMed  Google Scholar 

  15. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci. 2002;22(7):2780–91.

    CAS  PubMed  Google Scholar 

  16. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A. Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2003;100(5):2884–9. Epub 2003/02/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A, et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351–62.

    Article  CAS  PubMed  Google Scholar 

  19. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):57–71. Epub 2011/10/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burke RE, Dauer WT, Vonsattel JP. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol. 2008;64(5):485–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev. 1966;18(2):925–64.

    CAS  PubMed  Google Scholar 

  22. Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 1976;38(3–4):277–301.

    Article  CAS  PubMed  Google Scholar 

  23. Groves PM, Linder JC, Young SJ. 5-hydroxydopamine-labeled dopaminergic axons: three-dimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum. Neuroscience. 1994;58(3):593–604.

    Article  CAS  PubMed  Google Scholar 

  24. Gauthier J, Parent M, Levesque M, Parent A. The axonal arborization of single nigrostriatal neurons in rats. Brain Res. 1999;834(1–2):228–32.

    Article  CAS  PubMed  Google Scholar 

  25. Prensa L, Parent A. The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci. 2001;21(18):7247–60.

    CAS  PubMed  Google Scholar 

  26. Arbuthnott GW, Wickens J. Space, time and dopamine. Trend Neurosci. 2007;30(2):62–9. Epub 2006/12/19.

    Article  CAS  PubMed  Google Scholar 

  27. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci. 2009;29(2):444–53. Epub 2009/01/16.

    Article  CAS  PubMed  Google Scholar 

  28. Fallon JH. Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J Neurosci. 1981;1(12):1361–8.

    CAS  PubMed  Google Scholar 

  29. Bolam JP, Pissadaki EK. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord. 2012;27(12):1478–83. Epub 2012/09/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loughlin SE, Fallon JH. Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience. 1984;11(2):425–35.

    Article  CAS  PubMed  Google Scholar 

  31. Kawaguchi Y, Wilson CJ, Emson PC. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci. 1990;10(10):3421–8.

    CAS  PubMed  Google Scholar 

  32. Wu Y, Richard S, Parent A. The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res. 2000;38(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  33. Pissadaki EK, Bolam JP. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci. 2013;7:13. Epub 2013/03/22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of axonal transport in neurodegenerative diseases. Ann Rev Neurosci. 2008;31:151–73. Epub 2008/06/19.

    Article  PubMed  CAS  Google Scholar 

  35. Salinas S, Bilsland LG, Schiavo G. Molecular landmarks along the axonal route: axonal transport in health and disease. Curr Opin Cell Biol. 2008;20(4):445–53. Epub 2008/05/23.

    Article  CAS  PubMed  Google Scholar 

  36. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, et al. Axonal transport defects in neurodegenerative diseases. J Neurosci. 2009;29(41):12776–86. Epub 2009/10/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Staff NP, Benarroch EE, Klein CJ. Neuronal intracellular transport and neurodegenerative disease. Neurology. 2011;76(11):1015–20.

    Article  PubMed  Google Scholar 

  38. Millecamps S, Julien JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 2013;14(3):161–76. Epub 2013/01/31.

    Article  CAS  PubMed  Google Scholar 

  39. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol. 2014;206(5):655–70. Epub 2014/08/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmieg N, Menendez G, Schiavo G, Terenzio M. Signalling endosomes in axonal transport: travel updates on the molecular highway. Semin Cell Dev Biol. 2014;27:32–43. Epub 2013/11/01.

    Article  CAS  PubMed  Google Scholar 

  41. Gennerich A, Vale RD. Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol. 2009;21(1):59–67. Epub 2009/01/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135(Pt 7):2058–73. Epub 2012/06/22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chung CY, Koprich JB, Siddiqi H, Isacson O. Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci. 2009;29(11):3365–73. Epub 2009/03/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S, Grierson AJ, et al. Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci. 2004;117(Pt 7):1017–24. Epub 2004/03/05.

    Article  CAS  PubMed  Google Scholar 

  45. Kim-Han JS, Antenor-Dorsey JA, O’Malley KL. The Parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci. 2011;31(19):7212–21. Epub 2011/05/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu X, Kim-Han JS, Harmon S, Sakiyama-Elbert SE, O’Malley KL. The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener. 2014;9:17. Epub 2014/06/03.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mironov SL, Symonchuk N. ER vesicles and mitochondria move and communicate at synapses. J Cell Sci. 2006;119(Pt 23):4926–34. Epub 2006/11/16.

    Article  CAS  PubMed  Google Scholar 

  48. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, et al. Bidirectional Ca2+ -dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A. 2008;105(52):20728–33. Epub 2008/12/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009;61(4):541–55. Epub 2009/03/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Schwarz TL. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009;136(1):163–74. Epub 2009/01/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125(Pt 9):2095–104. Epub 2012/05/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lovas JR, Wang X. The meaning of mitochondrial movement to a neuron’s life. Biochim Biophys Acta. 2013;1833(1):184–94. Epub 2012/05/03.

    Article  CAS  PubMed  Google Scholar 

  53. Sheng ZH. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol. 2014;204(7):1087–98. Epub 2014/04/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893–906. Epub 2011/11/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, et al. Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 2012;8(3), e1002537. Epub 2012/03/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Katajisto P, Dohla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S, et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science. 2015;348(6232):340–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–43. Epub 2014/01/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Campello S, Scorrano L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep. 2010;11(9):678–84. Epub 2010/08/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet. 2012;21(22):4827–35. Epub 2012/08/24.

    Article  CAS  PubMed  Google Scholar 

  60. Pham AH, Meng S, Chu QN, Chan DC. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet. 2012;21(22):4817–26. Epub 2012/08/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304–17. Epub 2014/10/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876–80.

    Article  CAS  PubMed  Google Scholar 

  63. Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid YA. Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol. 1989;26(4):551–7.

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Reitbock P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain. 2010;133(Pt 7):2032–44. Epub 2010/06/11.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol. 2013;246:72–83. Epub 2012/01/31.

    Article  CAS  PubMed  Google Scholar 

  66. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013;136(Pt 8):2419–31. Epub 2013/07/26.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009;12(7):826–8. Epub 2009/06/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov Disord. 2013;28(1):41–50. Epub 2012/07/14.

    Article  CAS  PubMed  Google Scholar 

  69. Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–58.

    Article  CAS  PubMed  Google Scholar 

  70. Augustine GJ, Santamaria F, Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40(2):331–46.

    Article  CAS  PubMed  Google Scholar 

  71. Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–50.

    Article  CAS  PubMed  Google Scholar 

  72. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32(5–6):235–49.

    Article  CAS  PubMed  Google Scholar 

  73. Mogami H, Nakano K, Tepikin AV, Petersen OH. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell. 1997;88(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  74. Park MK, Petersen OH, Tepikin AV. The endoplasmic reticulum as one continuous Ca(2+) pool: visualization of rapid Ca(2+) movements and equilibration. EMBO J. 2000;19(21):5729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Choi YM, Kim SH, Chung S, Uhm DY, Park MK. Regional interaction of endoplasmic reticulum Ca2+ signals between soma and dendrites through rapid luminal Ca2+ diffusion. J Neurosci. 2006;26(47):12127–36. Epub 2006/11/24.

    Article  CAS  PubMed  Google Scholar 

  76. Schwyn RC, Fox CA. The primate substantia nigra: a Golgi and electron microscopic study. J Hirnforsch. 1974;15(1):95–126.

    CAS  PubMed  Google Scholar 

  77. Bardo S, Cavazzini MG, Emptage N. The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trend Pharmacol Sci. 2006;27(2):78–84.

    Article  CAS  Google Scholar 

  78. Cui G, Bernier BE, Harnett MT, Morikawa H. Differential regulation of action potential- and metabotropic glutamate receptor-induced Ca2+ signals by inositol 1,4,5-trisphosphate in dopaminergic neurons. J Neurosci. 2007;27(17):4776–85. Epub 2007/04/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rose CR, Konnerth A. Stores not just for storage. Intracellular calcium release and synaptic plasticity. Neuron. 2001;31(4):519–22.

    Article  CAS  PubMed  Google Scholar 

  80. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85(1):201–79.

    Article  CAS  PubMed  Google Scholar 

  81. Park MK, Choi YM, Kang YK, Petersen OH. The endoplasmic reticulum as an integrator of multiple dendritic events. Neuroscientist. 2008;14(1):68–77. Epub 2007/10/04.

    Article  CAS  PubMed  Google Scholar 

  82. Chen H, Chan DC. Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol. 2006;18(4):453–9. Epub 2006/06/20.

    Article  CAS  PubMed  Google Scholar 

  83. Schwarz TL. Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol. 2013;5(6):1–16. Epub 2013/06/05.

    Google Scholar 

  84. Boldogh IR, Pon LA. Mitochondria on the move. Trend Cell Biol. 2007;17(10):502–10.

    Article  CAS  Google Scholar 

  85. Hayashi T, Rizzuto R, Hajnoczky G, Su TP. MAM: more than just a housekeeper. Trend Cell Biol. 2009;19(2):81–8. Epub 2009/01/16.

    Article  CAS  Google Scholar 

  86. Pizzo P, Pozzan T. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trend Cell Biol. 2007;17(10):511–7. Epub 2007/09/14.

    Article  CAS  Google Scholar 

  87. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174(7):915–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Brito OM, Scorrano L. An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 2010;29(16):2715–23. Epub 2010/08/19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.

    Article  CAS  PubMed  Google Scholar 

  90. Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427(6972):360–4.

    Article  CAS  PubMed  Google Scholar 

  91. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476(7360):336–40. Epub 2011/06/21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476(7360):341–5. Epub 2011/06/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol. 2013;15(12):1464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mourier A, Motori E, Brandt T, Lagouge M, Atanassov I, Galinier A, et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol. 2015;208(4):429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sebastian D, Hernandez-Alvarez MI, Segales J, Sorianello E, Munoz JP, Sala D, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A. 2012;109(14):5523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Papanicolaou KN, Ngoh GA, Dabkowski ER, O’Connell KA, Ribeiro Jr RF, Stanley WC, et al. Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol. 2012;302(1):H167–79.

    Article  CAS  PubMed  Google Scholar 

  97. Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Ann Rev Neurosci. 2011;34:441–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Atherton JF, Bevan MD. Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci. 2005;25(36):8272–81.

    Article  CAS  PubMed  Google Scholar 

  99. Chan CS, Glajch KE, Gertler TS, Guzman JN, Mercer JN, Lewis AS, et al. HCN channelopathy in external globus pallidus neurons in models of Parkinson’s disease. Nat Neurosci. 2011;14(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  100. Gross A, Sims RE, Swinny JD, Sieghart W, Bolam JP, Stanford IM. Differential localization of GABA(A) receptor subunits in relation to rat striatopallidal and pallidopallidal synapses. Eur J Neurosci. 2011;33(5):868–78.

    Article  CAS  PubMed  Google Scholar 

  101. Lee CR, Tepper JM. Morphological and physiological properties of parvalbumin- and calretinin-containing gamma-aminobutyric acidergic neurons in the substantia nigra. J Comp Neurol. 2007;500(5):958–72.

    Article  CAS  PubMed  Google Scholar 

  102. Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J Neurosci. 2004;24(44):9921–32.

    Article  CAS  PubMed  Google Scholar 

  103. Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci. 2007;27(49):13552–66.

    Article  CAS  PubMed  Google Scholar 

  104. Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron. 2010;67(2):294–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Goldberg JA, Guzman JN, Estep CM, Ilijic E, Kondapalli J, Sanchez-Padilla J, et al. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat Neurosci. 2012;15(10):1414–21. Epub 2012/09/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci. 2009;29(35):11011–9. Epub 2009/09/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Paladini CA, Beckstead MJ, Weinshenker D. Electrophysiological properties of catecholaminergic neurons in the norepinephrine-deficient mouse. Neuroscience. 2007;144(3):1067–74.

    Article  CAS  PubMed  Google Scholar 

  108. Sanchez-Padilla J, Guzman JN, Ilijic E, Kondapalli J, Galtieri DJ, Yang B, et al. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci. 2014;17(6):832–40. Epub 2014/05/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007;8(6):451–65.

    Article  CAS  PubMed  Google Scholar 

  110. Puopolo M, Raviola E, Bean BP. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci. 2007;27(3):645–56. Epub 2007/01/20.

    Article  CAS  PubMed  Google Scholar 

  111. Putzier I, Kullmann PH, Horn JP, Levitan ES. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci. 2009;29(49):15414–9. Epub 2009/12/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447(7148):1081–6. Epub 2007/06/15.

    Article  CAS  PubMed  Google Scholar 

  113. Xu W, Lipscombe D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci. 2001;21(16):5944–51.

    CAS  PubMed  Google Scholar 

  114. Surmeier DJ, Guzman JN, Sanchez-Padilla J. Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium. 2010;47(2):175–82. Epub 2010/01/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sinnegger-Brauns MJ, Huber IG, Koschak A, Wild C, Obermair GJ, Einzinger U, et al. Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol. 2009;75(2):407–14.

    Article  CAS  PubMed  Google Scholar 

  116. Marder E, Abbott LF, Turrigiano GG, Liu Z, Golowasch J. Memory from the dynamics of intrinsic membrane currents. Proc Natl Acad Sci U S A. 1996;93(24):13481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Turrigiano G, Abbott LF, Marder E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science. 1994;264(5161):974–7.

    Article  CAS  PubMed  Google Scholar 

  118. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008;135(3):422–35. Epub 2008/11/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bean BP. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984;81:6388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Neuhoff H, Neu A, Liss B, Roeper J. I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci. 2002;22(4):1290–302.

    CAS  PubMed  Google Scholar 

  121. Shepard PD, Bunney BS. Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance. Exp Brain Res. 1991;86(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  122. Nedergaard S, Flatman JA, Engberg I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol. 1993;466:727–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ping HX, Shepard PD. Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport. 1996;7(3):809–14.

    Article  CAS  PubMed  Google Scholar 

  124. Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 2001;20(20):5715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, et al. Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci. 2010;13(3):333–7. Epub 2010/02/16.

    Article  CAS  PubMed  Google Scholar 

  126. Khaliq ZM, Bean BP. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci. 2010;30(21):7401–13. Epub 2010/05/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wilson CJ, Callaway JC. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol. 2000;83(5):3084–100.

    CAS  PubMed  Google Scholar 

  128. Sarpal D, Koenig JI, Adelman JP, Brady D, Prendeville LC, Shepard PD. Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Synapse. 2004;53(2):104–13.

    Article  CAS  PubMed  Google Scholar 

  129. Wolfart J, Neuhoff H, Franz O, Roeper J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci. 2001;21(10):3443–56.

    CAS  PubMed  Google Scholar 

  130. Deignan J, Lujan R, Bond C, Riegel A, Watanabe M, Williams JT, et al. SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons. Neuroscience. 2012;217:67–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gaspar P, Ben Jelloun N, Febvret A. Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience. 1994;61(2):293–305.

    Article  CAS  PubMed  Google Scholar 

  132. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 2010;468(7324):696–700. Epub 2010/11/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liang C-L, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience. 1996;75(2):523–33.

    Article  CAS  PubMed  Google Scholar 

  134. Liang CL, Sinton C, Sonsalla PK, German DC. Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration. 1996;5(4):313–8.

    Article  CAS  PubMed  Google Scholar 

  135. Liu Y, Harding M, Pittman A, Dore J, Striessnig J, Rajadhyaksha A, et al. Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J Neurophysiol. 2014;112(5):1119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morgenroth VH, Boadle-Biber M, Roth RH. Tyrosine hydroxylase: activation by nerve stimulation. Proc Natl Acad Sci U S A. 1974;71(11):4283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Menezes A, Zeman R, Sabban E. Involvement of intracellular or extracellular calcium in activation of tyrosine hydroxylase gene expression in PC12 cells. J Neurochem. 1996;67(6):2316–24.

    Article  CAS  PubMed  Google Scholar 

  138. Aumann TD, Egan K, Lim J, Boon WC, Bye CR, Chua HK, et al. Neuronal activity regulates expression of tyrosine hydroxylase in adult mouse substantia nigra pars compacta neurons. J Neurochem. 2011;116(4):646–58. Epub 2010/12/21.

    Article  CAS  PubMed  Google Scholar 

  139. Aumann T, Horne M. Activity-dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem. 2012;121(4):497–515. Epub 2012/02/24.

    Article  CAS  PubMed  Google Scholar 

  140. Balaban RS. Domestication of the cardiac mitochondrion for energy conversion. J Mol Cell Cardiol. 2009;46(6):832–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu T, O’Rourke B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J Bioenerg Biomembr. 2009;41(2):127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wellstead P, Cloutier M. Modelling and simulation of brain energy metabolism: energy and Parkinson’s disease. In: Wellstead P, Cloutier M, editors. Systems biology of Parkinson’s disease. New York: Springer; 2012. p. 19–38.

    Chapter  Google Scholar 

  143. Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 1999;18(4):833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci. 2005;8(12):1742–51. Epub 2005/11/22.

    Article  CAS  PubMed  Google Scholar 

  145. Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, et al. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci. 2012;15(9):1272–80. Epub 2012/08/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698–711.

    Article  CAS  PubMed  Google Scholar 

  147. Cardenas C, Foskett JK. Mitochondrial Ca(2+) signals in autophagy. Cell Calcium. 2012;52(1):44–51. Epub 2012/03/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Morikawa H, Khodakhah K, Williams JT. Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci. 2003;23(1):149–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Morikawa H, Imani F, Khodakhah K, Williams JT. Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons. J Neurosci. 2000;20(20):RC103.

    CAS  PubMed  Google Scholar 

  150. Brimblecombe KR, Gracie CJ, Platt NJ, Cragg SJ. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J Physiol. 2015;593(4):929–46. Epub 2014/12/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156(4):825–35. Epub 2014/02/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Villegas R, Martinez NW, Lillo J, Pihan P, Hernandez D, Twiss JL, et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci. 2014;34(21):7179–89. Epub 2014/05/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Williams JT, North RA, Shefner SA, Nishi S, Egan TM. Membrane properties of rat locus coeruleus neurones. Neuroscience. 1984;13(1):137–56.

    Article  CAS  PubMed  Google Scholar 

  154. Mo ZL, Katafuchi T, Muratani H, Hori T. Effects of vasopressin and angiotensin II on neurones in the rat dorsal motor nucleus of the vagus, in vitro. J Physiol. 1992;458:561–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Takakusaki K, Kitai ST. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience. 1997;78(3):771–94.

    Article  CAS  PubMed  Google Scholar 

  156. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 1976;101(3):569–75.

    Article  CAS  PubMed  Google Scholar 

  157. Hedrick T, Waters J. Physiological properties of cholinergic and non-cholinergic magnocellular neurons in acute slices from adult mouse nucleus basalis. PLoS ONE. 2010;5(6), e11046. Epub 2010/06/16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  159. Müller M, Cheung KH, Foskett JK. Enhanced ROS generation mediated by Alzheimer’s disease presenilin regulation of InsP3R Ca2+ signaling. Antioxid Redox Signal. 2011;14(7):1225–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14(11):709–21. Epub 2014/10/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dryanovski DI, Guzman JN, Xie Z, Galteri DJ, Volpicelli-Daley LA, Lee VM, et al. Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci. 2013;33(24):10154–64. Epub 2013/06/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev. 2014;14:19–30. Epub 2014/02/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995;369(2–3):136–9.

    Article  CAS  PubMed  Google Scholar 

  164. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001;1504(1):46–57.

    Article  CAS  PubMed  Google Scholar 

  165. Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998;95(13):7631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290(5493):985–9.

    Article  CAS  PubMed  Google Scholar 

  167. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418(3):291–6.

    Article  CAS  PubMed  Google Scholar 

  168. Lacza Z, Snipes JA, Zhang J, Horváth EM, Figueroa JP, Szabó C, et al. Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med. 2003;35(10):1217–28.

    Article  CAS  PubMed  Google Scholar 

  169. Kirkwood TB, Austad SN. Why do we age? Nature. 2000;408(6809):233–8.

    Article  CAS  PubMed  Google Scholar 

  170. Brichta L, Shin W, Jackson-Lewis V, Blesa J, Yap EL, Walker Z, et al. Identification of neurodegenerative factors using translatome-regulatory network analysis. Nat Neurosci. 2015;18(9):1325–33. Epub 2015/07/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bisaglia M, Filograna R, Beltramini M, Bubacco L. Are dopamine derivatives implicated in the pathogenesis of Parkinson’s disease? Ageing Res Rev. 2014;13:107–14. Epub 2014/01/07.

    Article  CAS  PubMed  Google Scholar 

  172. Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, et al. A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem. 2010;285(3):1957–66. Epub 2009/11/12.

    Article  CAS  PubMed  Google Scholar 

  173. Alter SP, Lenzi GM, Bernstein AI, Miller GW. Vesicular integrity in Parkinson’s disease. Curr Neurol Neurosci Rep. 2013;13(7):362. Epub 2013/05/22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, et al. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci U S A. 1997;94(18):9938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002;22(20):8951–60.

    CAS  PubMed  Google Scholar 

  176. Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, et al. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci. 2007;27(30):8138–48. Epub 2007/07/27.

    Article  CAS  PubMed  Google Scholar 

  177. Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, et al. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem. 2008;106(5):2205–17. Epub 2008/07/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Asanuma M, Miyazaki I, Diaz-Corrales FJ, Ogawa N. Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism. Acta Med Okayama. 2004;58(5):221–33.

    CAS  PubMed  Google Scholar 

  179. Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, et al. Neuromelanin of the human substantia nigra: an update. Neurotox Res. 2014;25(1):13–23. Epub 2013/10/25.

    Article  CAS  PubMed  Google Scholar 

  180. Lévay G, Ye Q, Bodell WJ. Formation of DNA adducts and oxidative base damage by copper mediated oxidation of dopamine and 6-hydroxydopamine. Exp Neurol. 1997;146(2):570–4.

    Article  PubMed  Google Scholar 

  181. Cavalieri EL, Li KM, Balu N, Saeed M, Devanesan P, Higginbotham S, et al. Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis. 2002;23(6):1071–7.

    Article  CAS  PubMed  Google Scholar 

  182. Zahid M, Saeed M, Yang L, Beseler C, Rogan E, Cavalieri EL. Formation of dopamine quinone-DNA adducts and their potential role in the etiology of Parkinson’s disease. IUBMB Life. 2011;63(12):1087–93. Epub 2011/11/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xu Y, Stokes AH, Roskoski RJ, Vrana KE. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res. 1998;54(5):691–7.

    Article  CAS  PubMed  Google Scholar 

  184. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11(11):1214–21. Epub 2005/10/18.

    Article  CAS  PubMed  Google Scholar 

  185. Conway KA, Rochet JC, Bieganski RM, Lansbury PTJ. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001;294(5545):1346–9. Epub 1346.

    Article  CAS  PubMed  Google Scholar 

  186. Van Laar VS, Mishizen AJ, Cascio M, Hastings TG. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis. 2009;34(3):487–500. Epub 2009/04/01.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Van Laar VS, Dukes AA, Cascio M, Hastings TG. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis. 2008;29(3):477–89. Epub 2008/01/30.

    Article  PubMed  CAS  Google Scholar 

  188. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008;118(2):777–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Segura-Aguilar J, Paris I, Munoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem. 2014;129(6):898–915. Epub 2014/02/20.

    Article  CAS  PubMed  Google Scholar 

  190. Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem. 2008;106(1):24–36. Epub 2008/04/04.

    Article  CAS  PubMed  Google Scholar 

  191. Mann DM, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev. 1983;21(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  192. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature. 1988;334(6180):345–8.

    Article  CAS  PubMed  Google Scholar 

  193. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A. 2000;97(22):11869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Karlsson O, Lindquist NG. Melanin affinity and its possible role in neurodegeneration. J Neural Transm. 2013;120(12):1623–30. Epub 2013/07/04.

    Article  CAS  PubMed  Google Scholar 

  195. Burke W. Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology. 2004;25(1–2):101–15.

    Article  CAS  PubMed  Google Scholar 

  196. Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res. 2003;989(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  197. Galter D, Buervenich S, Carmine A, Anvret M, Olson L. ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson’s disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis. 2003;14(3):637–47.

    Article  CAS  PubMed  Google Scholar 

  198. Westerlund M, Galter D, Carmine A, Olson L. Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh 1 mRNAs in rodent embryos. Cell Tissue Res. 2005;322(2):227–36. Epub 2005/07/28.

    Article  CAS  PubMed  Google Scholar 

  199. Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev. 2007;59(2):125–50. Epub 2007/03/24.

    Article  CAS  PubMed  Google Scholar 

  200. Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014;124(7):3032–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Woodard CM, Campos BA, Kuo SH, Nirenberg MJ, Nestor MW, Zimmer M, et al. iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Rep. 2014;9(4):1173–82. Epub 2014/12/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Olanow CW, Hauser RA, Jankovic J, Langston W, Lang A, Poewe W, et al. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord. 2008;23(15):2194–201. Epub 2008/10/22.

    Article  PubMed  Google Scholar 

  203. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361(13):1268–78.

    Article  CAS  PubMed  Google Scholar 

  204. Jankovic J, Berkovich E, Eyal E, Tolosa E. Symptomatic efficacy of rasagiline monotherapy in early Parkinson’s disease: post-hoc analyses from the ADAGIO trial. Parkinsonism Relat Disord. 2014;20(6):640–3. Epub 2014/03/19.

    Article  PubMed  Google Scholar 

  205. Binda C, Mattevi A, Edmondson DE. Structural properties of human monoamine oxidases A and B. Int Rev Neurobiol. 2011;100:1–11. Epub 2011/10/06.

    Article  CAS  PubMed  Google Scholar 

  206. Hauptmann N, Grimsby J, Shih JC, Cadenas E. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biophys. 1996;335(2):295–304.

    Article  CAS  PubMed  Google Scholar 

  207. Cohen G, Farooqui R, Kesler N. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci U S A. 1997;94(10):4890–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cohen G, Kesler N. Monoamine oxidase and mitochondrial respiration. J Neurochem. 1999;73(6):2310–5.

    Article  CAS  PubMed  Google Scholar 

  209. Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218–29. Epub 2009/05/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fahn S. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol. 2005;252 Suppl 4:IV37–42. Epub 2005/10/14.

    PubMed  Google Scholar 

  211. Parkkinen L, O’Sullivan SS, Kuoppamäki M, Collins C, Kallis C, Holton JL, et al. Does levodopa accelerate the pathologic process in Parkinson disease brain? Neurology. 2011;77(15):1420–6.

    Article  CAS  PubMed  Google Scholar 

  212. Olanow CW. Levodopa: effect on cell death and the natural history of Parkinson’s disease. Mov Disord. 2015;30(1):37–44. Epub 2014/12/17.

    Article  CAS  PubMed  Google Scholar 

  213. Bonifati V. Genetics of Parkinson’s disease – state of the art, 2013. Parkinsonism Relat Disord. 2014;20:S23–8.

    Article  PubMed  Google Scholar 

  214. Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet. 2007;16(2):R183–94. Epub 2007/10/04.

    Article  CAS  PubMed  Google Scholar 

  215. Giaime E, Yamaguchi H, Gautier CA, Kitada T, Shen J. Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening. PLoS ONE. 2012;7(7), e40501. Epub 2012/07/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS ONE. 2010;5(2), e9367. Epub 2010/02/27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014;33(4):282–95. Epub 2014/01/22.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1), e1000298. Epub 2010/02/04.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron. 2015;87(2):371–81. Epub 2015/07/17.

    Article  CAS  PubMed  Google Scholar 

  220. Pickrell AM, Youle RJ. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–73. Epub 2015/01/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144(5):689–702. Epub 2011/03/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378–83. Epub 2009/12/08.

    Article  CAS  PubMed  Google Scholar 

  223. Bishop MW, Chakraborty S, Matthews GA, Dougalis A, Wood NW, Festenstein R, et al. Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice. J Neurophysiol. 2010;104(6):3009–20. Epub 2010/10/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A. 1998;95(11):6469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.

    Article  CAS  PubMed  Google Scholar 

  226. Pasternak B, Svanstrom H, Nielsen NM, Fugger L, Melbye M, Hviid A. Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol. 2012;175(7):627–35. Epub 2012/03/06.

    Article  PubMed  Google Scholar 

  227. Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2008;70(16 Pt2):1438–44.

    Article  CAS  PubMed  Google Scholar 

  228. Uchida S, Yamada S, Nagai K, Deguchi Y, Kimura R. Brain pharmacokinetics and in vivo receptor binding of 1,4-dihydropyridine calcium channel antagonists. Life Sci. 1997;61(21):2083–90.

    Article  CAS  PubMed  Google Scholar 

  229. Marras C, Gruneir A, Rochon P, Wang X, Anderson G, Brotchie J, et al. Dihydropyridine calcium channel blockers and the progression of Parkinsonism. Ann Neurol. 2012;71(3):362–9. Epub 2012/03/28.

    Article  CAS  PubMed  Google Scholar 

  230. Nielsen MS, Vorum H, Lindersson E, Jensen PH. Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J Biol Chem. 2001;276(25):22680–4. Epub 2001/04/20.

    Article  CAS  PubMed  Google Scholar 

  231. Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, et al. Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol. 2007;170(5):1725–38. Epub 2007/04/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Diepenbroek M, Casadei N, Esmer H, Saido TC, Takano J, Kahle PJ, et al. Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]alphaSyn transgenic mice. Hum Mol Genet. 2014;23(15):3975–89. Epub 2014/03/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Foehring RC, Zhang XF, Lee JC, Callaway JC. Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol. 2009;102(4):2326–33. Epub 2009/08/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chan SL, Mattson MP. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res. 1999;58(1):167–90.

    Article  CAS  PubMed  Google Scholar 

  235. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83(3):731–801.

    Article  CAS  PubMed  Google Scholar 

  236. Goll DE, Thompson VF, Taylor RG, Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays. 1992;14(8):549–56.

    Article  CAS  PubMed  Google Scholar 

  237. Belal C, Ameli NJ, El Kommos A, Bezalel S, Al’Khafaji AM, Mughal MR, et al. The homocysteine-inducible endoplasmic reticulum (ER) stress protein Herp counteracts mutant alpha-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum Mol Genet. 2012;21(5):963–77. Epub 2011/11/03.

    Article  CAS  PubMed  Google Scholar 

  238. Hettiarachchi NT, Parker A, Dallas ML, Pennington K, Hung CC, Pearson HA, et al. alpha-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells. J Neurochem. 2009;111(5):1192–201. Epub 2009/10/29.

    Article  CAS  PubMed  Google Scholar 

  239. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol. 2011;10(11):1015–25.

    Article  CAS  PubMed  Google Scholar 

  240. Subramaniam M, Althof D, Gispert S, Schwenk J, Auburger G, Kulik A, et al. Mutant alpha-synuclein enhances firing frequencies in dopamine substantia nigra neurons by oxidative impairment of A-type potassium channels. J Neurosci. 2014;34(41):13586–99. Epub 2014/10/10.

    Article  PubMed  CAS  Google Scholar 

  241. Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell. 2013;155(6):1351–64. Epub 2013/12/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Anderson DW, Bradbury KA, Schneider JS. Neuroprotection in Parkinson models varies with toxin administration protocol. Eur J Neurosci. 2006;24(11):3174–82. Epub 2006/12/13.

    Article  PubMed  Google Scholar 

  243. Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, et al. Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem. 2008;104(6):1613–21. Epub 2007/11/02.

    Article  CAS  PubMed  Google Scholar 

  244. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, et al. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci. 2009;29(5):954–63. Epub 2009/02/28.

    Article  PubMed  Google Scholar 

  245. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66(5):646–61. Epub 2010/06/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Decressac M, Mattsson B, Lundblad M, Weikop P, Bjorklund A. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons. Neurobiol Dis. 2012;45(3):939–53. Epub 2011/12/21.

    Article  CAS  PubMed  Google Scholar 

  247. Dong Z, Ferger B, Paterna JC, Vogel D, Furler S, Osinde M, et al. Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc Natl Acad Sci U S A. 2003;100(21):12438–43. Epub 2003/10/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Dusonchet J, Bensadoun JC, Schneider BL, Aebischer P. Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson’s disease. Neurobiol Dis. 2009;35(1):32–41. Epub 2009/04/08.

    Article  CAS  PubMed  Google Scholar 

  249. Dusonchet J, Kochubey O, Stafa K, Young Jr SM, Zufferey R, Moore DJ, et al. A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2. J Neurosci. 2011;31(3):907–12. Epub 2011/01/21.

    Article  CAS  PubMed  Google Scholar 

  250. Low K, Aebischer P. Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis. 2012;48(2):189–201. Epub 2012/01/10.

    Article  PubMed  CAS  Google Scholar 

  251. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem. 2004;91(2):451–61. Epub 2004/09/28.

    Article  CAS  PubMed  Google Scholar 

  252. Johnson SJ, Wade-Martins R. A BACwards glance at neurodegeneration: molecular insights into disease from LRRK2, SNCA and MAPT BAC-transgenic mice. Biochem Soc Trans. 2011;39(4):862–7. Epub 2011/07/27.

    Article  CAS  PubMed  Google Scholar 

  253. Taylor TN, Potgieter D, Anwar S, Senior SL, Janezic S, Threlfell S, et al. Region-specific deficits in dopamine, but not norepinephrine, signaling in a novel A30P alpha-synuclein BAC transgenic mouse. Neurobiol Dis. 2014;62:193–207. Epub 2013/10/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S. L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010;67(5):600–6. Epub 2010/05/04.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 1996;741(1–2):185–96.

    Article  CAS  PubMed  Google Scholar 

  256. Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers: an update. Am J Med. 2004;116(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  257. Mannhold R, Rekker RF, Sonntag C, ter Laak AM, Dross K, Polymeropoulos EE. Comparative evaluation of the predictive power of calculation procedures for molecular lipophilicity. J Pharm Sci. 1995;84(12):1410–9.

    Article  CAS  PubMed  Google Scholar 

  258. Striessnig J, Koschak A, Sinnegger-Brauns MJ, Hetzenauer A, Nguyen NK, Busquet P, et al. Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochem Soc Trans. 2006;34(Pt 5):903–9.

    Article  CAS  PubMed  Google Scholar 

  259. Simuni T, Borushko E, Avram MJ, Miskevics S, Martel A, Zadikoff C, et al. Tolerability of isradipine in early Parkinson’s disease: a pilot dose escalation study. Mov Disord. 2010;25(16):2863–6.

    Article  PubMed  Google Scholar 

  260. Fitton A, Benfield P. Isradipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cardiovascular disease. Drugs. 1990;40(1):31–74.

    Article  CAS  PubMed  Google Scholar 

  261. Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis. 2011;43(2):364–71. Epub 2011/04/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant NS 047085 and awards from the JPB and IDP Foundations (DJS) and HL35440 and HL122062 (PTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Surmeier MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Surmeier, J., Zampese, E., Galtieri, D., Schumacker, P.T. (2016). Life on the Edge: Determinants of Selective Neuronal Vulnerability in Parkinson’s Disease. In: Reeve, A., Simcox, E., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-28637-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28637-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28635-8

  • Online ISBN: 978-3-319-28637-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics