Skip to main content

Fish Populations in East African Saline Lakes

  • Chapter
  • First Online:
Soda Lakes of East Africa

Abstract

The biodiversity of saline lakes is a topic of increasing interest among biologists, ecologists and conservation managers in East Africa. In spite of their extreme conditions and remote locations, East African saline lakes (EASL) support fish populations of considerable ecological, economic and biological importance. Among these are several endemic fish species that are highly specialized to survive in their individual lakes. Although there is growing concern that increasing human activities and projected adverse climatic conditions in the region may decimate these unique species, information on the status of individual fish populations remains scarce. In recognition of the important ecosystem services they provide, the EASL have been designated as World Heritage Sites (WHS) and protected by the Ramsar Convention. To complement these conservation efforts regarding EASL and to ensure full realization of the potential of their fisheries, there is need for up-to-date information on their fish population status. We present therefore an overview of the status of fish populations in EASL with special emphasis on the Magadi tilapia Alcolapia grahami, a teleost fish thriving in extreme hypersaline alkaline water conditions that would kill other fish in a matter of minutes. We show how several decades of research on this small cichlid fish inhabiting Lake Magadi, Kenya, reveal astonishing “snapshots” on how fish can survive under challenging environmental conditions, which, in this rare instance, are actually close to their physiological optima. As climatic models predict a decline in freshwater sources and an increment in adverse water conditions, studies on fish inhabiting saline lakes could aid scientists in modelling how species may evolve to adapt to extreme conditions in their changing habitats. We highlight conservation challenges facing the long-term existence of EASL fish populations. Finally, an integrated multidisciplinary approach is recommended to ensure the preservation and sustainable management of EASL fish populations and fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamanov A, Mikkola H (2011) Biodiversity friendly fisheries management possible on Issyk-Kul Lake in the Kyrgyz Republic? Ambio 40:479–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht H (1968) Freilandbeobachtungen an Tilapien (Pisces: Cichlidae) in Ostafrika. Z Tierpsychol 25:377–394

    CAS  PubMed  Google Scholar 

  • Albrecht H, Apfelbach R, Wickler W (1968) Über die Eigenständigkeit der Art Tilapia grahami Boulenger, ihren Grubenbau und die Zucht in reinem Süßwasser (Pisces, Cichlidae). Senck Biol 49:107–111

    Google Scholar 

  • Avery S (2010) Hydrological impacts of Ethiopia’s Omo basin on Kenya’s Lake Turkana water levels and fisheries. Final report prepared for the African Development Bank, Tunis. http://www.afdb.org/. Accessed 23 Feb 2014

  • Bergman AN, Laurent P, Otiang’a-Owiti G, Bergman HL, Walsh PJ, Wilson P, Wood CM (2003) Physiological adaptations of the gut in the Lake Magadi tilapia, Alcolapia grahami, and alkaline and saline adapted fish. Comp Biochem Physiol A 136:701–715

    Article  CAS  Google Scholar 

  • Boulenger GA (1912) On a collection of fishes made by Mr. A. Blayney Percival in British East Africa to the East of Lake Baringo. Proc Zool Soc Lond 1912:672–676

    Google Scholar 

  • Brauner CJ, Gonzalez RJ, Wilson JM (2013) Extreme environments: hypersaline, alkaline and ion poor waters. In: McCormick SD, Farrell A, Brauner CJ (eds) Fish physiology, vol 32. Academic, Boca Raton, pp 435–476

    Google Scholar 

  • Brook L (1994) Changes in the limnological behavior of a tropical African explosion crater lake: L. Hora-Kilole, Ethiopia. Limnologica 24:57–70

    Google Scholar 

  • Brook L (2003) Ecological changes of two Ethiopian lakes as caused by contrasting human interventions. Limnologica 33:44–53

    Article  Google Scholar 

  • Burtzer KW, Isaac GL, Richardson JL, Washbourn KC (1972) Radiocarbon dating of East African Lake levels. Science 175:1069–1076

    Article  Google Scholar 

  • Bwathondi POJ (2002) Fish diversity of the wild and aquaculture water bodies in Singida Region. Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania. http://aquaticcommons.org/4516/1/Bwathondi.pdf. Accessed 4 Mar 2014

  • Bwathondi POJ, Ngatunga BP, Mwambungu JA (2000) Biodiversity of the aquatic fauna of Tarangire river and Lake Manyara catchment basin, Tanzania. Unpublished consultancy report to WWF

    Google Scholar 

  • Coe MJ (1965) Tilapia grahami Boulenger. A study in environmental extremes. J Appl Ecol 2:414

    Google Scholar 

  • Coe MJ (1966) The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. Acta Trop 23:146–177

    Google Scholar 

  • Coe MJ (1967) Local migration of Tilapia grahami Boulenger in Lake Magadi, Kenya in response to diurnal temperature changes in shallow water. Afr J Ecol 5:171–174

    Article  Google Scholar 

  • Cole GA (1994) Text book of limnology, 4th edn. Waveland Press, Prospect Heights

    Google Scholar 

  • Coleman HE, Johnson VK (1988) Summary of trout management at Pyramid Lake, Nevada with emphasis on Lahontan cutthroat trout, 1954–1987. Am Fish Soc Symp 4:107–115

    Google Scholar 

  • Constanza R (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Cooper RN, Wissel B (2012) Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes. Aquat Biosyst 8:29. doi:10.1186/2046-9063-8-29

    Article  PubMed  PubMed Central  Google Scholar 

  • Cossins AR, Crawford DL (2005) Opinion – fish as models for environmental genomics. Nat Rev Genet 6:324–333

    Article  CAS  PubMed  Google Scholar 

  • Eddy FB, Maloiy GMO (1984) Ionic content of body fluids and sodium efflux in Oreochromis alcalicus grahami, a fish living at temperatures above 30 °C and in conditions of extreme alkalinity. Comp Biochem Physiol A 78:359–361

    Article  Google Scholar 

  • Eddy FB, Bamford OS, Maloiy GMO (1981) Na+ and Cl effluxes and ionic regulation in Tilapia grahami, a fish living in conditions of extreme alkalinity. J Exp Biol 91:349–353

    CAS  Google Scholar 

  • El-Shafai SA, El-Gohary FA, Nasr FA, van der Steen NP, Gijzen HJ (2004) Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquaculture 232:117–127

    Article  CAS  Google Scholar 

  • El-Zaeem SY, Ahmed MM, Salama ME, Darwesh DMF (2012) Production of salinity tolerant tilapia through interspecific hybridization between Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis sp.). Afr J Agric Res 7:2955–2961

    Google Scholar 

  • El-Zaeem SY, Ahmed MM, Salama ME, El-Maremie HA (2013) Production of salinity tolerant Nile tilapia, Oreochromis niloticus through traditional and modern breeding methods: II. Application of genetically modified breeding by introducing foreign DNA into fish gonads. Afr J Biotechnol 10:684–695

    Google Scholar 

  • Ferguson AJD, Harbott BJ (1982) In: Hopson AJ (ed) Geographical, physical and chemical aspects of lake Turkana. Overseas Development Administration, London, vol 1, pp 1–107

    Google Scholar 

  • Floria D, Gustenelli A, Caffara M, Turci F, Quaglio F, Konecny R, Nilowitz T, Wathuta EM, Magana A, Otachi EO, Matolla GK, Warugu HW, Liti D, Mbaluka R, Thiga B, Munguti J, Akoll P, Mwanja W, Asaminew K, Tadesse Z, Fioravanti ML (2009) Veterinary and public health aspects in tilapia (Oreochromis niloticus) aquaculture in Kenya, Uganda and Ethiopia. Ittiopatologia 6:51–93

    Google Scholar 

  • Franklin CE, Crockford T, Johnston IA, Kamunde C (1994) The thermostability of hemoglobins from the hot-spring fish Oreochromis alcalicus grahami: comparisons with Antarctic and temperate species. J Thermal Biol 19:277–280

    Article  CAS  Google Scholar 

  • Franklin CE, Crockford T, Johnston IA, Kamunde C (1995) Scaling of oxygen consumption in Lake Magadi tilapia, Oreochromis alcalicus grahami: a fish living at 37 °C. J Fish Biol 46:829–834

    Google Scholar 

  • Frisch D, Green AJ, Figuerola J (2007) High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. J Aquat Sci 69:568–574

    Article  Google Scholar 

  • Froese R, Pauly D (2014) FishBase. World Wide Web electronic publication. www.fishbase.org. Accessed Feb 2014

  • Fryer G, Iles TD (1972) The cichlid fishes of the great lakes of Africa. Their biology and evolution. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Getahun A, Lazara KJ (2001) Lebias stiassnyae: a new species of killifish from Lake Afdera, Ethiopia (Teleostei: Cyprinodontidae). Copeia 2001:150–153

    Article  Google Scholar 

  • Getahun A, Stiassny MLJ (1998) The freshwater biodiversity crisis: the case of the Ethiopian fish fauna. SINET Ethiop J Sci 21:207–230

    Article  Google Scholar 

  • Githaiga JM (1997) Utilization patterns and inter-lake movements of the lesser flamingo and their conservation in the saline lakes of Kenya. In: Howard G (ed) Conservation of the lesser flamingo in Eastern Africa and beyond Nairobi. IUCN, Kenya, pp 11–21

    Google Scholar 

  • Goerner A, Jolie E, Gloaguen R (2009) Non-climatic growth of the saline Lake Beseka, Main Ethiopian Rift. J Arid Environ 73:287–295

    Article  Google Scholar 

  • Golubtsov AS, Dgebuadze YY, Mina MV (2002) Fishes of the Ethiopian rift valley. In: Tudorancea C, Taylor WD (eds) Ethiopian rift valley lakes, Biology of inland water series. Backhuys, Leiden, pp 167–258

    Google Scholar 

  • Grant WD (2004) Introductory chapter: half a lifetime in soda lakes. In: Ventosa A (ed) Halophilic microorganisms. Springer, Heidelberg, pp 17–22

    Chapter  Google Scholar 

  • Hammer TU (1986) Saline lake ecosystems of the world. Dr. W. Junk, Dordrecht

    Google Scholar 

  • Harper DM, Childress RB, Harper MM, Boar RR, Hickley P, Mills SC, Otieno N, Drane T, Vareschi T, Nasirwa O, Mwatha WE, Darlington JPEC, Escute-Gasulla X (2003) Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 500:259–276

    Article  Google Scholar 

  • Herbst DB (2001) Gradients of salinity stress, environmental stability and water chemistry as a template for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466:209–219

    Article  CAS  Google Scholar 

  • Hilgendorf FM (1905) Fische von Deutsch und Englisch Ost-Afrika, gesammelt von Oskar Neumann, 1893–1895. Zool Jahrb Abt Syst Geogr Biol Tiere 22:405–418

    Google Scholar 

  • Hopson AJ (1982) Lake Turkana. A report on the findings of the Lake Turkana project 1972–1975, vol 1–6. Overseas Development Administration, London, p 1614

    Google Scholar 

  • Hughes L (2008) Mining the Maasai Reserve: the story of Magadi. J East Afr Stud 2:134–164

    Article  Google Scholar 

  • Hughes RH, Hughes JS (1992) A directory of African wetlands. IUCN/UNEP/WCMC, Gland/Nairobi/Cambridge

    Google Scholar 

  • Issar AS (2003) Climate changes during the Holocene and their impact on hydrological systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jellison R (2005) IX International conference on salt lake research: research opportunities and management challenges. Saline Syst 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Jellison R, Zadereev YS, DasSarma PA, Melack JM, Rosen MR, Degermendzhy AG, DasSarma S, Zambrana G (2004) Conservation and management challenges of saline lakes: a review of five experience briefs. Lake Basin Management Initiative. Thematic Paper 1–28

    Google Scholar 

  • Johannsson OE, Bergman HL, Wood CM, Laurent P, Kavembe DG, Bianchini A, Maina JN, Chevalier C, Bianchini LF, Papah MB, Ojoo RO (2014) Air breathing in Magadi tilapia Alcolapia grahami, under normoxic and hyperoxic conditions, and the association with sunlight and reactive oxygen species. J Fish Biol 84:844–863

    Article  CAS  PubMed  Google Scholar 

  • Johansen K, Maloiy GM, Lykkeboe G (1975) A fish in extreme alkalinity. Respir Physiol 24:159–162

    Article  CAS  PubMed  Google Scholar 

  • Johnson TC, Malala JO (2009) Lake Turkana and its link to the Nile. In: Dumond HJ (ed) The Nile: origin, environments, limnology and human use. Springer, New York, p 818

    Google Scholar 

  • Johnston IA, Guderley H, Franklin CE, Crockford T, Kamunde C (1994) Are mitochondria subject to evolutionary temperature adaptation? J Exp Biol 195:293–306

    PubMed  Google Scholar 

  • Kallqvist T, Lien L, Liti D (1988) Lake Turkana – limnological study 1985–1988. Norwegian Institute for Water Research (NIVA), Kenya Marine and Fisheries Institute

    Google Scholar 

  • Kamal AMM, Mair GC (2005) Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 247:189–201

    Article  Google Scholar 

  • Kavembe GD, Machado-Schiaffino G, Meyer A (2014) Pronounced genetic differentiation of small, isolated and fragmented tilapia populations inhabiting the Magadi soda lake in Kenya. Hydrobiologia 739:55–71

    Article  Google Scholar 

  • Kolding J (1989) The fish resources of Lake Turkana and their environment. Thesis for the Cand. Scient. degree in fisheries biology and final report of KEN 043 Trial Fishery 1986–1987. University of Bergen, Norway, Report to NORAD, Oslo

    Google Scholar 

  • Kolding J (1995) Changes in species composition and fish populations in Lake Turkana. In: Pitcher TJ, Hart BH (eds) The impact of species changes in African lakes, vol 18, Fish and fisheries series. Chapman and Hall, New York, pp 335–363

    Chapter  Google Scholar 

  • Laurent P, Maina JN, Bergman HL, Narahara AN, Walsh PJ, Wood CM (1995) Gill structure of a fish from an alkaline lake: effect of short-term exposure to neutral conditions. Can J Zool 73:1170–1181

    Article  Google Scholar 

  • Legesse D, Gasse F, Radakovitch O, Vallet-Coulomb C, Bonnefille R, Verschuren D, Gibert E, Barker P (2002) Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeogr Palaeoclim Palaeoecol 187:233–258

    Article  Google Scholar 

  • Lindley TE, Scheiderer CL, Walsh PJ, Wood CM, Bergman HL, Bergman AN, Laurent P, Wilson P, Anderson PM (1999) Muscle as a primary site of urea cycle enzyme activity in an alkaline lake-adapted tilapia, Oreochromis alcalicus grahami. J Biol Chem 274:29858–29861

    Article  CAS  PubMed  Google Scholar 

  • Lykkeboe G, Johanson K, Maloiy GMO (1975) Functional properties of hemoglobins in the teleost Tilapia grahami. J Comp Physiol 104:1–11

    Article  CAS  Google Scholar 

  • Maina JN (1990) A study of the morphology of the gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution. Anat Embryol 181:83–98

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1991) A morphometric analysis of chloride cells in the gills of the teleosts Oreochromis alcalicus and Oreochromis niloticus and a description of presumptive urea-excreting cells in O. alcalicus. J Anat 175:131–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN (2000a) Functional morphology of the gas-gland cells of the air-bladder of Oreochromis alcalicus grahami (Teleostei: Cichlidae): an ultrastructural study on a fish adapted to a severe, highly alkaline environment. Tissue Cell 32:117–132

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2000b) The highly specialized secretory epithelium in the buccal cavity of the alkalinity adapted Lake Magadi cichlid, Oreochromis alcalicus grahami (Teleostei: Cichlidae): a scanning and transmission electron microscope study. J Zool 251:427–438

    Article  Google Scholar 

  • Maina JN, Wood CM, Narahara A, Bergman HL, Laurent P, Walsh PJ (1995) Morphology of the swim bladder of a cichlid teleost: Oreochromis alcalicus grahami (Trewavas 1983), a fish adapted to a hyperosmotic, alkaline and hypoxic environment: a brief outline of the structure and function of the swim bladder. In: Munshi JS, Dutta HM (eds) Horizons of new research in fish morphology in the 20th century. Oxford and IBH, New Delhi, pp 179–192

    Google Scholar 

  • Maina JN, Kisia SM, Wood CM, Narahara A, Bergman HL, Laurent P, Walsh PJ (1996) A comparative allometry study of the morphology of the gills of an alkaline adapted cichlid fish, Oreochromis alcalicus grahami of Lake Magadi, Kenya. Int J Salt Lake Res 5:131–156

    Article  Google Scholar 

  • Maloiy GMO, Lykkeboe G, Johansen K, Bamford OS (1978) Osmoregulation in Tilapia grahami: a fish in extreme alkalinity. In: Schmidt-Nielsen K, Bolis L, Maddrell SHP (eds) Comparative physiology: water, ions and fluid mechanics. Cambridge University Press, Cambridge, pp 229–238

    Google Scholar 

  • McKaye KR, van den Berghe EP (1996) Specialized egg feeding behavior by African and Central American cichlids. Ichthyol Explor Freshw 7:143–148

    Google Scholar 

  • Melack JM (1996) Saline and freshwater lakes of the Kenyan rift valley. In: McClanahan TR, Young TP (eds) East African ecosystems and their conservation. Oxford University Press, New York, pp 171–190

    Google Scholar 

  • Mugisha AG, Nhwani LB, Daffa MJ, Howell K (1993) Evaluation of selected wetlands for identification of one wetland to be dedicated to the Ramsar Convention by the Tanzania Government. In: Technical Report submitted to National Environment and Management Council (NEMC) Tanzania

    Google Scholar 

  • Muška M, Vašek M, Modrý D, Jirků M, Ojwang WO, Malala JO, Kubečka J (2012) The last snapshot of natural pelagic fish assemblage in Lake Turkana, Kenya: a hydroacoustic study. J Great Lakes Res 38:98–106

    Article  Google Scholar 

  • Nagl S, Tichy H, Mayer WE, Takezaki N, Takahata N, Klein J (2001) The origin and age of haplochromine fishes in Lake Victoria, East Africa. Proc R Soc B 267:1049–1061

    Article  Google Scholar 

  • Narahara A, Bergman HL, Laurent P, Maina JN, Walsh PJ, Wood CM (1996) Respiratory physiology of the Lake Magadi tilapia (Oreochromis alcalicus grahami), a fish adapted to a hot, alkaline, and frequently hypoxic environment. Physiol Zool 69:1114–1136

    Article  Google Scholar 

  • Oduor SO, Schagerl M (2007) Temporal trends of ion contents and nutrients in the three Kenya rift valley saline-alkaline lakes and their influence on phytoplankton biomass. Hydrobiologia 548:59–68

    Article  CAS  Google Scholar 

  • Ojwang WO, Ojuok JE, Omondi R, Malala J, Abila R, Ikmat P (2010) Impacts of river impoundments: the case of hydro power projects on Omo River of Lake Turkana. SAMAKI News, Department of Fisheries, Kenya, vol 6, pp 26–28

    Google Scholar 

  • Okeyo DO (2006) On the distribution of fishes of the Kenya’s Great Rift Valley drainage system. Discov Innov 18:141–159

    Article  Google Scholar 

  • Olaka LA, Odada EO, Trauth MH, Olago DO (2010) The sensitivity of East African rift lakes to climate fluctuations. J Paleolimnol 44:629–644

    Article  Google Scholar 

  • Papah MB, Kisia SM, Ojoo RO, Makanya AN, Wood CM, Kavembe GD, Maina JN, Johannsson OE, Bergman HL, Laurent P, Chevalier C, Bianchini A, Bianchini LF, Onyango DW (2013) Morphological evaluation of spermatogenesis in Lake Magadi tilapia (Alcolapia grahami): a fish living on the edge. Tissue Cell 45:371–382

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO, Schulte PM, Wood CM, Schiemer F (2010) Niche dimensions in fishes: an integrative view. Physiol Biochem Zool 83:808–826

    Article  PubMed  CAS  Google Scholar 

  • Ramsar (2014) Ramstar site list. http://www.ramsar.org/pdf/sitelist.pdf. Accessed 15 Mar 2014

  • Randall DJ, Wood CM, Perry SF, Bergman HL, Maloiy GMO, Mommsen TP, Wright PA (1989) Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337:165–166

    Article  CAS  PubMed  Google Scholar 

  • Reite OB, Maloiy GMO, Aasehaug B (1974) pH, salinity and temperature tolerance of Lake Magadi tilapia. Nature 274:315–316

    Article  Google Scholar 

  • Roberts TR (1993) Just another dammed river? Negative impacts of Pak Mun Dam on fishes of the Mekong basin. Nat Hist Bull Siam Soc 41:105–133

    Google Scholar 

  • Roberts N, Taieb M, Barker P, Damnati B, Icole M, Williamson D (1993) Timing of the younger Dryas event in East Africa from lake-level changes. Nature 366:146–148

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Seegers L, Tichy H (1999) The Oreochromis alcalicus flock (Teleostei: Cichlidae) from Lakes Natron and Magadi, Tanzania and Kenya, with descriptions of two new species. Ichthyol Explor Freshw 10:97–146

    Google Scholar 

  • Seegers L, Sonnenberg R, Yamamoto R (1999) Molecular analysis of the Alcolapia flock from Lakes Natron and Magadi, Tanzania and Kenya (Teleostei: Cichlidae), and implications for their systematics and evolution. Ichthyol Explor Freshw 10:175–199

    Google Scholar 

  • Seegers L, De Vos L, Okeyo DO (2003) Annotated checklist of the freshwater fishes of Kenya (excluding the lacustrine haplochromines from Lake Victoria). J East Afr Nat Hist 92:11–47

    Article  Google Scholar 

  • Skadhauge E, Lechene CP, Maloiy GMO (1980) Tilapia grahami: role of intestine in osmoregulation under conditions of extreme alkalinity. In: Lahlou B (ed) Epithelial transport in the lower vertebrates. Cambridge University Press, Cambridge, pp 133–142

    Google Scholar 

  • Sosa-López A, Mouillot D, Ramos-Miranda J, Flores-Hernandez D, Do Chi T (2007) Fish species richness decreases with salinity in tropical coastal lagoons. J Biogeogr 34:52–61

    Article  Google Scholar 

  • Street-Perrott FA, Roberts N (1983) Fluctuations in closed-basin lakes as an indicator of past atmospheric circulation patterns. In: Street-Perrott A, Beran M, Ratcliffe R (eds) Variations in the global water budget. Reidel, Dordrecht, pp 331–345

    Chapter  Google Scholar 

  • Thieme ML, Abell R, Burgess N, Lehner B, Dinerstein E, Olson D, Teugels G, Kamdem-Toham A, Stiassny MLJS, Skelton P (2005) Freshwater ecoregions of Africa and Madagascar: a conservation assessment. Island Press, Washington, DC

    Google Scholar 

  • Tichy H, Seegers L (1999) The Oreochromis alcalicus flock (Teleostei: Cichlidae) from lakes Natron and Magadi, Tanzania and Kenya, a model for the evolution of “new” species flocks in historical times? Ichthyol Explor Freshw 10:147–174

    Google Scholar 

  • Tobler M, Plath M (2011) Living in extreme habitats. In: Evans J, Pilastro A, Schlupp I (eds) Ecology and evolution of poeciliid fishes. University of Chicago Press, Chicago, pp 120–127

    Google Scholar 

  • Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British Museum of Natural History, London

    Google Scholar 

  • Vareschi E (1979) The ecology of Lake Nakuru (Kenya). II. Biomass and spatial distribution of fish (Tilapia grahami Boulenger = Sarotherodon alcalicum grahami Boulenger). Oecologia 37:321–325

    Article  Google Scholar 

  • Verschuren D (1996) Comparative palaeolimnology in a system of four shallow, climate-sensitive tropical lake basins. In: Johnson TC, Odada E (eds) The limnology, climatology and palaeoclimatology of the east African lakes. Gordon and Breach, Newark, pp 559–572

    Google Scholar 

  • Verschuren D, Tibby J, Sabbe K, Roberts N (2000) Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81:164–182

    Article  Google Scholar 

  • Vincens A, Casanova J (1987) Modern background of Natron-Magadi Basin (Tanzania-Kenya): physiography, climate, hydrology and vegetation. Sci Geol Bull 40:9–22

    Google Scholar 

  • Walsh PJ, Bergman HL, Narahara A, Wood CM, Wright PA, Randall DJ, Maina JN, Laurent P (1993) Effects of ammonia on survival, swimming, and activities of enzymes of nitrogen metabolism in the Lake Magadi tilapia Oreochromis alcalicus grahami. J Exp Biol 180:323–327

    CAS  Google Scholar 

  • Walsh PJ, Heitz M, Campbell CE, Cooper GJ, Medina M, Wang YS, Goss GG, Vincek V, Wood CM, Smith CP (2000) Molecular identification of a urea transporter in gills of the ureotelic gulf toadfish (Opsanus beta). J Exp Biol 203:2357–2364

    CAS  PubMed  Google Scholar 

  • Walsh PJ, Grosell M, Goss GG, Bergman HL, Bergman AN, Wilson P, Laurent P, Alper SL, Smith CP, Kamunde C, Wood C (2001) Physiological and molecular characterization of urea transport by the gills of the Lake Magadi tilapia (Alcolapia grahami). J Exp Biol 204:509–520

    CAS  PubMed  Google Scholar 

  • White TH (1953) Some speculations on the sudden occurrence of floods in the history of Lake Magadi. J East Afr Nat Hist 22:69–71

    Google Scholar 

  • Williams WD (2002) Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ Conserv 29:154–167

    Article  Google Scholar 

  • Williams WD, Boulton AJ, Taaffe RG (1990) Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 381:191–201

    Article  Google Scholar 

  • Wilson PJ, Wood CM, Maina JN, White BN (2000) Genetic structure of Lake Magadi tilapia populations. J Fish Biol 56:590–603

    Article  Google Scholar 

  • Wilson PJ, Wood CM, Walsh PJ, Bergman AN, Bergman HL, Laurent P, White BN (2004) Discordance between genetic structure and morphological, ecological, and physiological adaptation in Lake Magadi tilapia. Physiol Biochem Zool 77:537–555

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Perry SF, Wright PA, Bergman HL, Randall DJ (1989) Ammonia and urea dynamics in the Lake Magadi tilapia, a ureotelic teleost fish adapted to an extremely alkaline environment. Respir Physiol 77:1–20

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Bergman HL, Laurent P, Maina JN, Narahara A, Walsh PJ (1994) Urea production, acid-base regulation, and their interactions in the Lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J Exp Biol 189:13–36

    CAS  PubMed  Google Scholar 

  • Wood CM, Wilson PW, Bergman HL, Bergman AN, Laurent P, Otiang’a-Owiti G, Walsh PJ (2002a) Iono-regulatory strategies and the role of urea in the Magadi tilapia (Alcolapia grahami). Can J Zool 80:503–515

    Article  CAS  Google Scholar 

  • Wood CM, Wilson PW, Bergman HL, Bergman AN, Laurent P, Otiang’a-Owiti G, Walsh PJ (2002b) Obligatory urea production and the cost of living in the Magadi tilapia revealed by acclimation to reduced salinity and alkalinity. Physiol Biochem Zool 75:111–122

    Article  PubMed  Google Scholar 

  • Wood CM, Bergman HL, Bianchini A, Laurent P, Maina J, Johannsson OE, Bianchini LF, Chevalier C, Kavembe GD, Papah MB, Ojoo RO (2012) Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity. J Comp Physiol 182:247–258

    Article  Google Scholar 

  • Wood CM, Nawata CM, Wilson JM, Laurent P, Chevalier C, Bergman HL, Bianchini A, Maina JN, Johannson OE, Bianchini LF, Kavembe GD, Papah MB, Ojoo RO (2013) Rh proteins and NH4 +-activated Na+ATPase in the Magadi tilapia (Alcolapia grahami), a 100 % ureotelic teleost fish. J Exp Biol 216:2998–3007

    Article  CAS  PubMed  Google Scholar 

  • World Heritage Sites (2014). http://whc.unesco.org/en/list/1060. Accessed 15 Mar 2014

  • Wright PA, Fyhn JH (2001) Ontogeny of nitrogen metabolism and excretion. In: Anderson PA, Wright PA (eds) Fish physiology, vol 20. Academic, Orlando, pp 149–200

    Google Scholar 

  • Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312

    Article  CAS  PubMed  Google Scholar 

  • Wright PA, Perry SF, Randall DJ, Wood CM, Bergman H (1990) The effects of reducing water pH and total CO2 on a teleost fish adapted to an extremely alkaline environment. J Exp Biol 151:361–369

    Google Scholar 

  • Yanda PZ, Madulu NF (2005) Water resource management and biodiversity conservation in the Eastern rift valley lakes, Northern Tanzania. Phys Chem Earth Part A/B/C 30:717–725

    Article  Google Scholar 

  • Yongo EO, Abila RO, Lwenya C (2010) Emerging resource use conflicts between Kenyan fishermen, pastoralists and tribesmen of Lake Turkana. Aquat Ecosyst Health Manage 13:28–34

    Article  Google Scholar 

  • Zaccara S, Crosa G, Vanetti I, Binelli G, Harper DM, Mavuti KM, Balarin JD, Britton JR (2014) Genetic and morphological analyses indicate high population mixing in the endangered cichlid Alcolapia flock of East Africa. Conserv Genet 15:429–440

    Article  Google Scholar 

  • Zinabu G (2002) The Ethiopia rift valley lakes: major threats and strategies for conservation. In: Tudorancea C, Taylor WD (eds) Ethiopia rift valley lakes. Backhages, Leiden, pp 259–270

    Google Scholar 

Download references

Acknowledgement

This work was supported by various grants. GDK is supported by a collaborative scholarship grant from the Deutscher Akademischer Austausch Dienst (DAAD) and Kenyan Ministry of Education, Science and Technology (MOEST). AM is supported by the University of Konstanz, grants of the Deutsche Forschungsgemeinschaft and the European Research Council. CMW is supported by the Canada Research Chair Program and grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). We thank Papah Babak, Ora Johannsson, Daniel Msafiri Shayo and Ayub Oduor for useful discussions during the preparation of this manuscript. We appreciate the logistical support by Tata Chemicals Magadi (formerly Magadi Soda Company) during several research expeditions in which some of the observations and data reported in the chapter were collected.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine D. Kavembe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kavembe, G.D., Meyer, A., Wood, C.M. (2016). Fish Populations in East African Saline Lakes. In: Schagerl, M. (eds) Soda Lakes of East Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-28622-8_9

Download citation

Publish with us

Policies and ethics